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We propose a novel estimator for the number of mixture compo-
nents (denoted by M) in a non-parametric finite mixture model. The
setting that we consider is one where the analyst has repeated obser-
vations of K ≥ 2 variables that are conditionally independent given
a finitely supported latent variable with M support points. Under a
mild assumption on the joint distribution of the observed and latent
variables, we show that an integral operator T that is identified from
the data has rank equal to M. We use this observation, in conjunction
with the fact that singular values of operators are stable under per-
turbations, to propose an estimator of M which essentially consists
of a thresholding rule that counts the number of singular values of a
consistent estimator of T that are greater than a data-driven thresh-
old. We prove that our estimator of M is consistent, and establish
some non-asymptotic results which provide finite sample performance
guarantees for our estimator. We present a Monte Carlo study which
shows that our estimator performs well for samples of moderate size.

1. Introduction. Finite mixture models provide a flexible means to
model unobserved heterogeneity, and their usage spans across several disci-
plines including social sciences, medicine, biology and engineering. We refer
the reader to Compiani and Kitamura [7] and McLachlan and Peel [23] for
a discussion of their usage in economics and other disciplines.

This paper derives a novel estimator for the number of mixture compo-
nents in a non-parametric finite mixture model. We consider a setting where
the analyst observes an i.i.d sample of K ≥ 2 variables (X1, X2, · · · , XK)
that are assumed to be independent (but not necessarily identically dis-
tributed) given some finitely supported latent variable Θ
( Θ ∈ {1, · · · ,M}), i.e,
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2 C. KWON AND E. MBAKOP

(1.1) F (x) = F (x1, · · · , xK) =
M∑
m=1

P (Θ = m)
K∏
k=1

Fmk (xk),

where F (x1, · · · , xK) denotes the distribution of X = (X1, X2, · · · , XK)
(which is identified from the data), and each mixture component

∏K
K=1 F

m
k (xk),

for m ∈ {1, · · · ,M}, represents the distribution of X conditional on {Θ =
m} (the latter being equal to the product of the marginals under the con-
ditional independence assumption). Here we do not impose any parametric
assumption on the distribution of the mixture components. It was shown
in Allman, Matias, and Rhodes [8] (Theorem 8 and 9) that if K ≥ 3 and
the component distributions {Fmk }Mm=1 are linearly independent (for each
k ∈ {1, · · · ,K}), then the representation 1.1 is unique up to swaps of the
labels of the mixture components. Hence the joint distribution of (X,Θ) is
identified (up to label swapping) from that of X (see also Hall and Zhou
[9], Hettmansperger and Thomas [11], and Hall et al. [10]). Moreover, when
K ≥ 2 and the component distributions are linearly independent, Kasahara
and Shimotsu [18] show that the number of mixture components M is iden-
tified. In this paper we provide a new proof of the latter fact. We show that
an integral operator T that is identified from the distribution of X has fi-
nite rank equal to M , and we use this observation to construct a consistent
estimator of M . Indeed, we prove that a thresholding rule which essentially
counts the number of singular values of of a consistent estimator T̂ of T (in
the operator norm) greater than a sample size dependent threshold, yields a
consistent estimator of M . For implementation of our estimator, we provide
simple numerical procedures to compute the singular values of T̂ and the
threshold rule.

An example of a setting (in economics) where the mixture representation
of equation 1.1 arises, is the study of first and second-price auctions with
private values and unobserved heterogeneity. In Hu, McAdams, and Shum
[15] (for instance) the authors consider an auction model where bidders’
valuations for the auctioned object are independent given an unobserved
heterogeneity Θ. There, Θ represents characteristics of the auctioned object
that are commonly observed by the bidders (and affect their valuations),
but which are not observed by the analyst. The conditional independence of
bidders’ valuation given Θ implies that the bids (which by assumption are
observed by the analyst) are also independent given Θ and thus satisfy equa-
tion 1.1, where X now represents the vector of observed bids. The goal is to
recover the joint distribution of bids and unobserved heterogeneity (all the
terms on the right-hand side of equation 1.1) from the distribution of the ob-
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served bids (the term of the left-hand side of 1.1). Once the joint distribution
of bids and unobserved heterogeneity is identified, standard results from the
auction literature (see Hu, McAdams, and Shum [15]) can be used to iden-
tify the joint distribution of valuations and unobserved heterogeneity, from
which the analyst can then perform counter-factual analysis under different
auction environments (see also Hu [14], Kasahara and Shimotsu [17], Hu,
McAdams and Shum [15], An, Hu and Shum [2], Hu and Shum [16], Aguir-
regabiria and Mira [1], and Xiao [26] for other instances in economics where
modelling assumptions give rise to the mixture structure of 1.1). Although
Hu, McAdams, and Shum [15] show that the number of mixture compo-
nents M is identified in their model, they do not provide a way to estimate
it and simply assume it to be known when they estimate the mixture model
(Bonhomme, Jochmans, and Robin [5], Bonhomme, Jochmans, and Robin
[6], Levine, Hunter, and Chauveau [21] and Benaglia, Chauveau, and Hunter
[3] also provide estimators of the mixture model 1.1 under the assumption
that M is known). However, incorrectly specifying the number of mixture
components can lead to incorrect inference of the model’s parameters. Under
the identifying assumption of Hu, McAdams, and Shum [15], our procedure
provides a consistent estimator of the number of mixture components M ,
and can thus be viewed as a first step toward estimating the mixture model
1.1.

A paper closely related to ours is Kasahara and Shimotsu [18] which
studies the identification and estimation of M (or lower bounds on M) in
Equation 1.1, and as in this paper, does not impose any parametric restric-
tions on the distribution of (X,Θ). There, it is shown that when K = 2 (for
instance), some matrices P∆ − each one associated to a rectangular parti-
tion ∆ of the support of X = (X1, X2) − are identified from the distribution
of X and have rank at most M (see Section 2.3). Moreover, under the linear
independence assumption, Kasahara and Shimotsu [18] show that there ex-
ist some good partitions ∆ for which the associated matrices P∆ have rank
equal to M . However, those good partitions ∆ for which the matrices P∆

have rank equal to M depend on the distribution of X, and in general (for
an arbitrary partition ∆) the rank of P∆ is only a lower bound on M . The
approach of Kasahara and Shimotsu [18] consists in estimating the rank of
P∆ for a partition ∆ chosen at the discretion of the analyst. We show be-
low (Section 2.3) that our approach is very much related to theirs. Indeed,
when the components of X are continuous, the matrix P∆ can be seen as a
restriction of our operator T to the finite dimensional subspace of piecewise
constant functions on the partition ∆ (see Proposition 2.4 below).

Our estimator offers many advantages over that of Kasahara and Shi-
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motsu [18]. First, under the linear independence assumption, our estimator
always consistently estimates the number of mixture components, whereas
that of Kasahara and Shimotsu [18] is in general only consistent to a lower
bound on M . Hence, to our knowledge, our paper is the first one in the liter-
ature to provide a consistent estimator of M under the linear independence
assumption. Secondly, when the linear independence assumption does not
hold, our estimator is consistent to a lower bound on the number of mixture
components which is always at least as large as the lower bound estimated
by the method of Kasahara and Shimotsu [18]. Thirdly, we establish non-
asymptotic results which provide finite sample performance guarantees for
our estimator. In contrast, all the results of Kasahara and Shimotsu [18] are
asymptotic in nature, and they do not provide results to assess the finite
sample performance of their procedure. Fourthly, unlike the procedure of
Kasahara and Shimotsu [18], our procedure does not require the analyst to
have knowledge of a good upper bound M0 on M . We show in a simulation
study that for moderate sample sizes, the performance of our procedure is
comparable to theirs when M0 is slightly larger than M , and that having
M0 much larger or much smaller than M can lead to a significant reduction
in the performance of their procedure. This makes our procedure relatively
more appealing in empirical settings where (bounds on) M can plausibly
take a wide range of values.

The rest of the paper is organized as follows. In Section 2 we introduce the
model and provide our main identification results which relate the number of
mixture components M to the rank of an integral operator T , and in Section
2.3 we discuss the connection between our approach and that of Kasahara
and Shimotsu [18]. Using our identification argument, we provide in Section
3 an estimator for M , and establish some of its statistical properties. Section
4 presents our Monte Carlo study, and all proofs are provided in Section 5
Notation Given a continuous linear operator T : H1 → H2, where H1 and
H2 are separable Hilbert spaces, we will use ‖ · ‖ to denote the operator
norm defined by ‖T‖ := sup{ω∈H1, ‖ω‖H1

=1} ‖T (ω)‖H2 , where ‖ · ‖H1 and

‖ · ‖H2 denote the norms associated with the inner product on H1 and H2

respectively. For f ∈ H1 and g ∈ H2, g ⊗ f denotes their tensor product,
which is the rank-one operator defined by g⊗ f : H1 → H2 with g⊗ f(ω) =
g〈f, ω〉1, where ω ∈ H1 and 〈·, ·〉1 denotes the inner product on H1. When T
is compact, we use σ1(T ) ≥ σ2(T ) ≥ · · · to denote the singular values of T
in decreasing order (repeated according to their multiplicities). When H1 =
H2 = H, we use ‖T‖HS to denote the Hilbert-Schmidt norm of T defined by
‖T‖2HS :=

∑∞
i=1

∑∞
j=1 (〈ej , T (ei)〉H)2 where {ei}∞i=1 is an orthonormal basis

of H (the sum is independent of the choice of the basis). be treated as one.
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2. Model and identification. We consider a K-variate (K ≥ 2) finite
mixture model where the observed random vectors X1, · · · , XK are condi-
tionally independent given some latent variable Θ, as described by equation
1.1. We refer to each Xk (k = 1, · · · ,K) as a component of X, and the Xk’s
can be either discrete or continuous. Our goal is to estimate the number of
mixture components M in equation 1.1 from an i.i.d sample of X. It can be
shown (see Allman, Matias, and Rhodes [8]) that in general, there are dis-
tributions F that admit at least two mixture representations as in equation
1.1, with different numbers of mixture components. However, from Proposi-
tion 3 of Kasahara and Shimotsu [18] (see also Theorem 8 and 9 of Allman,
Matias, and Rhodes [8]), when K ≥ 2 the number of mixture components is
identified from the distribution of X ( i.e., all possible representation of the
type 1.1 will have the same number of mixture components) if the condi-
tional distributions of the components of X given Θ satisfy a full rank/linear
independence condition. As the latter is a key assumption needed to identify
M , we state it below as a main assumption. We discuss after stating some
of our results how the conclusions change when the full rank condition fails.

Assumption 2.1. (Full rank /Linear independence) There are at
least two components Xi and Xj of X (i, j ∈ {1, · · · ,K}) for which the
corresponding families of conditional distributions {Fmi }Mm=1 and {Fmj }Mm=1

that appear in equation 1.1 are linearly independent.

Assumption 2.1 is mild; it is shown in Mbakop [22] (Proposition 7.4) that
it holds generically (see also Proposition 2 in Kasahara and Shimotsu [18]). It
requires the distribution of at least two components of X varies sufficiently
across the M groups. In fact, in the case of a two components mixtures,
requiring linear independence of two distributions is equivalent to requiring
that they are different (not equal everywhere).

2.1. The K=2 case. For simplicity of exposition, we will first consider the
case where K = 2, and consider the general case further below. We further
assume that the components of X are continuously distributed, and that X
has a density with respect to the Lebesgue measure. The case with discrete
components is somewhat simpler, and will be discussed further below (see
Remark 2.3 and 2.4).

Let D1 (resp. D2) denote the dimension of X1 (resp. X2), and set D =
D1 +D2, i.e., we have X1 ∈ RD1 , X2 ∈ RD2 , and X ∈ RD. We assume that
the random vector X has a density with respect to the Lebesgue measure
on RD, denoted f , which is square integrable. In what follows, we assume
that D1 = D2 = 1. The higher dimensional case can be handled similarly.
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Note that the density f is identified from the data and can be estimated
consistently (at some rate) under additional smoothness assumptions. Let
L2(R) denote the Hilbert space of square integrable functions on R, and let
the integral operator T , T : L2(R)→ L2(R), be defined by

(2.1) [T (w)](x2) =

∫
S1
w(x1)f(x1, x2)dx1,

for any w ∈ L2(R). Note that the operator T is identified from the data
(since it is entirely determined by the density f which is identified from the
data), and equation 1.1 implies that T has the following representation:

(2.2) T =

M∑
m=1

πmf
m
2 ⊗ fm1

where fmi (i ∈ {1, 2} and m ∈ {1, · · · ,M}) denotes the conditional density
of Xi given Θ = m, and πm = P (Θ = m). The following proposition shows
that in general, the operator T has rank (defined as the dimension of the
range of T ) less than or equal to M . Moreover, when Assumption 2.1 holds,
the operator T has rank (exactly) equal to M , and the number of mix-
ture components is identified. The identification of the number of mixture
components under Assumption 2.1 was already established in Kasahara and
Shimotsu [18] (see Proposition 3 (a)); besides providing an alternative proof
of the identification of M , the proposition is useful as it relates M to the
rank of the operator T , a fact which we exploit to estimate M (or a lower
bound on M). The content of the proposition is similar in spirit to that of
Lemma 10 of Elizabeth, Matias, and Rhode [8], and a proof is provided in
Section 5

Proposition 2.1. Suppose that the distribution of X = (X1, X2) sat-
isfies a mixture representation of the form given by equation 1.1. Then we
have rank(T ) ≤M . Moreover, if Assumption 2.1 holds, then rank(T ) = M .

As a consequence of Proposition 2.1, the operator T is compact, and it
admits a singular value decomposition ( see Theorem 15.16 in Kress [20]) of
the form:

(2.3) T =

rank(T )∑
m=1

σmvm ⊗ um.

Here {um}rank(T )
m=1 forms an orthonormal basis for the orthogonal comple-

ment (with respect to the inner product on L2(R)) to the null space of T ,
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{vm}rank(T )
m=1 forms an orthonormal basis for the range of T , and {σm}rank(T )

m=1

denote the singular values of T which are strictly positive. We exploit this
singular value decomposition further below to construct an estimator for M
or a lower bound on M , depending on whether or not we maintain Assump-
tion 2.1.

We now introduce a family of operators {Th}(h≥0), Th : L2(R) → L2(R),
which can be thought of as regularizations of the operator T , and which are
defined by:

(2.4) [Th(w)](x2) =

∫
S1
w(x1)fh(x1, x2)dx1,

for any w ∈ L2(R), and with the function fh denoting the convolution of
the density f with a “product kernel”:

(2.5) fh(x1, x2) =

∫
R2

f(u, v)Kh(x1 − u)Kh(x2 − v)dudv.

Here Kh(·) = (1/h)K(·/h), where K is some density function (or kernel
function in general) on R − the density of the standard normal for instance
(the dependence of Th on the choice of the regularizing density K is left
implicit for notational simplicity). As we show in Proposition 2.2 below,
rank(Th) = rank(T ) (for all h > 0) when the Fourier transform of K van-
ishes at most on a set of Lebesgue measure zero, and the estimation of
rank(T ) is equivalent to the estimation of rank(Th) for any h > 0. As we
show below in Section 3, the main advantage of the operators Th over the
operator T , is that they admit consistent unbiased estimators, and concen-
tration inequalities can be used to derive bounds on their estimation error.

Proposition 2.2. Let the integral operators T and Th be defined as in
equation 2.1 and 2.4, and let the kernel function K, which appears in the
definition of the operator Th, be any function that is square-integrable with
a Fourier Transform that vanishes on a set of measure at most zero. Then
rank(Th) = rank(T ) for any h > 0, and each operator Th admits a singular
value decomposition

(2.6) Th =

rank(T )∑
m=1

σhm vhm ⊗ uhm

with all the singular values {σhm}
rank(T )
m=1 strictly positive.
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Remark 2.1. In general, there is no simple expression which relates the
mixture representation of equation 2.2 to the singular value decomposition
of equation 2.3. However, for some mixture models, both representations
coincide and the singular value decomposition is given by the mixture repre-
sentation. Consider for instance the bi-variate mixture model X1 = Θ + U ,
X2 = Θ + V , where {U, V,Θ} are independent, U ∼ V ∼ uniform([0, 1])
and Support(Θ) = {0, 1, 2}. For this particular example the mixture repre-
sentation is given by

(2.7) T = π0f
0
2 ⊗ f0

1 + π1f
1
2 ⊗ f1

1 + π2f
2
2 ⊗ f2

1

where the densities fm1 and fm2 are equal to the density of a uniform([m,m+
1]), and πm = P (Θ = m). Since for i ∈ {1, 2} the densities {fmi }2m=0 have
disjoint support, we have

∫
fmi (x)fm

′
i (x)dx = δmm′ (δmm′ = 0 if m 6= m′ and

δmm′ = 1 otherwise), and the functions {fmi }2m=0 are mutually orthogonal
with unit (L2) norm. We thus conclude that the singular value decomposition
of the operator T is given by

T = π0f
0
2 ⊗ f0

1 + π1f
1
2 ⊗ f1

1 + π2f
2
2 ⊗ f2

1

and the singular values {σm} are given by the proportion of types {πm}. Note
that if for each i ∈ {1, 2}, the densities {fmi }Mm=1 have disjoint supports but
are not necessarily uniformly distributed, then a slight modification of the
above argument shows that the singular value decomposition of the operator
T is now given by

T = σ0f̃
0
2 ⊗ f̃0

1 + σ1f̃
1
2 ⊗ f̃1

1 + σ2f̃
2
2 ⊗ f̃2

1

where f̃mi = fmi /‖fmi ‖ and the singular values σm are given by σm =
πm‖fm1 ‖‖fm2 ‖, with ‖f‖ denoting the L2 norm of f . In our Monte Carlo
study (Section 4), we will consider designs given by uniform mixtures of the
type given by equation 2.7. We show in Section 3 that the performance of
our procedure depends on the magnitude of the singular values of T , and
the uniform designs of the type given by equation 2.7 will have the advan-
tage that their singular values are known exactly. For the other designs that
we consider, we will only know that a singular value decomposition exists,
but we will not know the exact magnitudes of the singular values. However,
we will be able to obtain estimates of the magnitudes of the singular values
through simulations.

We now provide some heuristics for our estimation procedure. The full
details are given below in Section 3. Let {Xi}Ni=1 be an i.i.d sample of X
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(for notational simplicity, we use Xi to denote either the ith observation
of the vector X in the sample {Xi}Ni=1, or the ith component of the vec-
tor X; although this may raise some confusion, we think that the correct
interpretation of Xi will be clear from the context), and let T̂h be a con-
sistent estimator of Th in the Hilbert-Schmidt norm (hence in the operator
norm) constructed from the sample {Xi}Ni=1. Our estimation of rank(T )
(equivalently rank(Th)) hinges on the observation that the singular val-
ues of Th are stable. Indeed, by Weyl’s inequality for singular values (See
Horn and Johnson [13] −Inequality 3.3.19 p.178− or H. Weyl (1912)), if
σ1(T ) ≥ σ2(T ) ≥ · · · denote the singular values of a compact operator T in
non-increasing order (repeated according to their multiplicities), we have

(2.8) |σi(T )− σi(T ′)| ≤ ‖T − T ′‖

for any compact operators T and T ′, for any i ≥ 1. Furthermore, by the
Hoffman-Wielandt inequality (see Horn and Johnson [13] − inequality 3.3.32
p.186, which is valid in our setting since all the operators that we consider
in this paper are of finite rank) we have

(2.9)
∑
i≥1

|σi(T )− σi(T ′)|2 ≤ ‖T − T ′‖2HS .

As a consequence of inequality 2.8, if τ̂h(N) = op(1) is such that P (‖Th −
T̂h‖ > τ̂h(N)) → 0, then a consistent estimator of rank(T ) is given by the
number of singular values of T̂h that are larger than τ̂h(N), i.e,

(2.10) M̂ = #{i|σi(T̂h) ≥ τ̂h(N)}.

Moreover, as a consequence of inequality 2.9, if the threshold τ̂h(N) = op(1)
is now chosen such that P (‖Th − T̂h‖HS > τ̂h(N))→ 0, then an alternative
consistent estimator of rank(T ) is given by

(2.11) M̂ = #{j |

∑
i≥j

σi(T̂h)2

1/2

≥ τ̂h(N)}.

Indeed, letting R := rank(T ) (implying σj(Th) = 0 for all j > R), inequality

2.9 implies that for all j > R we have
(∑

i≥j σi(T̂h)2
)1/2

≤ ‖T̂h − Th‖HS ≤

τ̂h(N) (with high probability), and that for all j ≤ R
(∑

i≥j σi(T̂h)2
)1/2

→(∑
i≥j σi(Th)2

)1/2
which is strictly positive, and thus much larger than (with
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high probability) the threshold τ̂h(N) (= op(1)). As the Hilbert-Schmidt
norm is a Hilbertian norm, it is easier (for us) to control the estimation error
of Th in the Hilbert-Schmidt norm (‖T̂h−Th‖HS) than in the operator norm
(‖T̂h−Th‖). Hence, the estimator of rank(T ) that we consider in this paper
is the one resulting from the Hoffman-Wielandt inequality, equation 2.11,
and we leave the investigation of estimators of the type given by equation
2.10 for future research. In Section 3, we provide a consistent estimator
T̂h of Th, and a data-driven threshold τ̂h(N), for the estimator 2.11, which
converges in probability to zero (as the sample size N →∞) and is an upper
bound on the estimation error ‖T̂h − Th‖HS with probability approaching 1
(as N →∞). We also provide a simple numerical procedure to compute the
singular values of T̂h.

Remark 2.2. As we recall in Section 2.3, the method of Kasahara and
Shimotsu [18] also relates the number of mixture components M to the rank
of some operators. Indeed, they show that some matrices P∆ (defined in
equation 2.13 below) have rank at most M , and their estimation procedure
is based on estimating the rank of an empirical analogue of P∆.

Remark 2.3. A natural extension of the definition of the operator T
in 2.1 to the case with discrete components can be obtained by replacing
f in equation 2.1 by the probability mass function. When both components
of X are discrete (for instance) the operator T reduces to a matrix, and
the estimation of M under Assumption 2.1 reduces to the estimation of
the rank of a matrix. In the latter setting, the problem becomes essentially
finite dimensional, and the method of Kasahara and Shimotsu [18] (like our
method) will provide a consistent estimator of rank(T ). In fact, as we show
below (Proposition 2.4), the operator T in the discrete case is equal to the
matrix P∆, with ∆ given by the finest partition of the support of X. However,
when a component of X is continuous, the operator T is a proper infinite
dimensional operator. In contrast to the approach of Kasahara and Shimotsu
[18] that estimates the rank of a restriction of the operator T to a fixed finite
dimensional subspace (see Proposition 2.4) (with the rank of the restriction
of T possibly smaller than that of T ), the approach of the present paper is
fully non-parametric and estimates directly the rank of T .

Remark 2.4. The requirement that {Fmi }Mm=1 are linearly independent
in Assumption 2.1 puts a restriction on the size of the support of the com-
ponent Xi if it is discrete: it implies that Xi must have at least M support
points.
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2.2. The general case (K ≥ 2). We now consider the case where the
observed multivariate vector X has more than two components that are
conditionally independent, i.e, X = (X1, · · · , XK) with K ≥ 2, and equa-
tion 1.1 holds. For each i ∈ {1, · · · ,K}, let Di denote the dimension of of
the ith component of X, i.e., Xi ∈ RDi , let Si ⊂ RDi denote the support of
Xi, and let L2(Si) denote the space of square integrable functions on Si. We
assume that all the continuous components of X have a joint density with
respect to the Lebesgue measure (on the Euclidean space of corresponding
dimension). For each 1 ≤ i < j ≤ K, let fi,j denote the density (or prob-
ability mass function in the discrete case) of the pair (Xi, Xj), and let the
(associated) integral operator Ti,j : L2(Si) → L2(Sj), which to a square in-
tegrable function w ∈ L2(Si) of the ith component of X assigns the square
integrable function Ti,j(w) of the jth component of X defined by

(2.12) [Ti,j(w)](xj) =

∫
S1
w(xi)fi,j(xi, xj)dxj .

The following proposition is a straightforward generalization (or corollary)
of Proposition 2.1

Proposition 2.3. Suppose that the distribution of X = (X1, · · · , XK)
(K ≥ 2) satisfies a mixture representation of the form 1.1. Then for any
1 ≤ i < j ≤ K, we have rank(Ti,j) ≤M . Moreover, if Assumption 2.1 holds,
then max1≤i<j≤K rank(Ti,j) = M , with the maximal rank being achieved by
operators Ti,j such that each set of distributions {Fmi }Mm=1 and {Fmj }Mm=1 is
linearly independent.

2.3. Connection to the approach of Kasahara and Shimotsu. In this sec-
tion, we first give a brief description of the approach proposed by Kasahara
and Shimotsu [18], and then discuss how their procedure is related to ours.
As done in Kasahara and Shimotsu [18], we focus on the case where K = 2.
The case where K > 2 can be reduced to the case where K = 2 by consider-
ing an aggregation of the components of X. When K = 3 for instance, and
the components of X = (X1, X2, X3) are conditionally independent given
some latent variable Θ, we can define the variable X ′2 = (X2, X3) and con-
sider the bivariate random vector X = (X1, X

′
2) (whose components are also

conditionally independent given Θ) which can be analyzed using the tools
developed for the case where K = 2.

Let X = (X1, X2) denote a bivariate random vector, with Xi supported
on Si (i = 1, 2). Let ∆ = ∆1×∆2 be a rectangular partition of the support of
X, with ∆i := {δi1, · · · , δi|∆i|} forming a partition of Si. Given the partition
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∆, let P∆ ∈ R|∆1|×|∆2|, denote the matrix with (i, j)th element given by

(2.13) [P∆]i,j = P (X1 ∈ δ1
i , X2 ∈ δ2

j ).

The method of Kasahara and Shimotsu [18] hinges on the observation
that under the mixture representation of equation 1.1, the matrices P∆ (for
any partition ∆) have rank at most M . Indeed, the conditional independence
assumption implies that

P (X1 ∈ δ1
i , X2 ∈ δ2

j ) =

M∑
m=1

P (Θ = m)P (X1 ∈ δ1
i |Θ = m)P (X2 ∈ δ2

j |Θ = m),

and the matrix P∆ can be written as the sum of M rank 1 matrices as follows

(2.14) P∆ =
M∑
m=1

πmP
m
1 ⊗ Pm2

where πm = P (Θ = m), Pm1 (with a similar definition for Pm2 ) is a vector in
R|∆1| with ith element given by [Pm1 ]i = P (X1 ∈ δ1

i |Θ = m), and the tensor
product u⊗v here has the simpler interpretation of the vector outer product,
i.e, u⊗v = uvT . As the matrices P∆ (one for each partition ∆) can be repre-
sented as the sum of M rank-one matrices, they each have rank at most M .
Therefore, any consistent estimator of the rank of P∆ (for a given partition
∆) will also be a consistent estimator of a lower bound on M . The approach
of Kasahara and Shimotsu [18] essentially consists in constructing such con-
sistent estimators for rank(P∆). In addition, Kasahara and Shimotsu [18]
show that under assumption 2.1, there exists at least one partition ∆ for
which P∆ has rank M , thus showing that M is identified under Assumption
2.1 (note that such a partition ∆ necessarily satisfies min{|∆1|, |∆2|} ≥M).
However, the identifying partitions ∆ for which rank(P∆) = M can only be
determined from the distribution of X, and Kasahara and Shimotsu [18] do
not provide a method for choosing/estimating such identifying partitions in
finite sample. As a consequence, their approach is in general only consistent
to a lower bound on M , and is consistent for M only in those cases when
the partition ∆ chosen by the analyst happens to satisfy rank(P∆) = M .

We now establish the connection between the two approaches. The fol-
lowing proposition shows that the matrices P∆ are simply the restrictions
of the integral operator T (equation 2.1) to finite dimensional subspaces. A
proof is provided in Section 5. Before stating the proposition, we first intro-
duce some notation. Given a partition ∆ = ∆1×∆2, letM∆i ⊂ L2(Si), for
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i ∈ {1, 2}, denote subspaces of piecewise constant functions on the elements
of the partition ∆i, defined by

M∆i := {ω ∈ L2(Si) | ω =

|∆i|∑
j=1

ajIδij , with the a′is ∈ R}.

Note that the subspace M∆i , for i ∈ {1, 2}, has (finite) dimension equal
to |∆i|. For i = 1 or 2, let Γ∆i : R|∆i| → M∆i , be defined by Γ∆i(a) =∑|∆i|

j=1 ajIδij (for a ∈ R|∆i|), and let its adjoint Γ∗
∆i : L2(Si) → R|∆i| be the

operator which to each element ω ∈ L2(Si) assigns the vector Γ∗
∆i(ω) ∈ R|∆i|

with jth component given by [Γ∗
∆i(ω)]j =

∫
δij
ω(xi)dxi.

Proposition 2.4. Suppose that K = 2 and that the conditional indepen-
dence (equation 1.1) representation holds. For each partition ∆ = ∆1×∆2,
we have

(2.15) P T∆ = Γ∗∆2 ◦ T ◦ Γ∆1

where ◦ denotes operator composition. As a consequence, for all ∆ we have

(2.16) rank(P∆) ≤ rank(T ).

Moreover, there exists at least one partition ∆ such that rank(P∆) = rank(T ).

Remark 2.5. Note that Assumption 2.1 is not needed to establish Propo-
sition 2.4. As a consequence, when Assumption 2.1 does not hold, Proposi-
tion 2.1 and 2.4 imply that our approach (which estimates the rank of T )
will be consistent to a lower bound on M that is in general at least as large
as the lower bound estimated by the procedure of Kasahara and Shimotsu
[18]. Moreover, when linear independence holds, our approach will always
be consistent for M , whereas that of Kasahara and Shimotsu [18] will in
general only be consistent to a lower bound on M . For instance, if the parti-
tion ∆ is such that max{|∆1|, |∆2|} < M , then any consistent estimator of
the rank of P∆ will be asymptotically strictly less than M (with probability
approaching 1).

3. Estimation. In the setting of Section 2.1 (K = 2), we propose in
this section an estimator of rank(T ) based on an i.i.d sample {Xi}Ni=1 of
X, and discuss further below (see Remark 3.4) how to extend the results
to the general setting (K > 2). The main result of this section is Theo-
rem 3.1 which provides a consistent estimator of rank(T ) of the type given
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by equation 2.11 with a data-driven threshold, as well as non-asymptotic
performance guarantees. The main tools used to derive the results of this
section are perturbation theory results (Hoffman-Wielandt inequality-2.9)
and concentration inequalities for sums of independent Hilbert space valued
random elements (Lemma 2 in Smale and Zhou [25]). Our approach is sim-
ilar to that taken in Koltchinskii and Gine [19], Zwald and Blanchard [27],
Blanchard, Bousquet, and Zwald [4] and Rosasco, Belkin, and De Vito [24],
who also combine perturbation theory results and concentration inequalities
to study spectral properties of estimates of integral operators.

The estimator M̂ that we propose is based on a consistent estimator T̂h
of Th. From Proposition 2.2, the operator T and the operators Th (h >
0) have the same rank. However, as we show below (Proposition 3.1 and
Proposition 3.2), one main advantage of using the operators Th’s (instead
of the operator T ) to estimate rank(T ) is that the operators Th can be
estimated without bias and concentration inequalities readily yield simple
parametric (

√
N rate) data-driven bounds on their estimation errors ‖T̂h −

Th‖HS . By contrast, the estimation of the operator T necessarily involves a
bias term, which may converge to zero at a very slow non-parametric rate,
unless the density f is sufficiently smooth. Moreover, the presence of a bias
term makes it difficult to obtain good bounds on ‖T̂ − T‖HS , as bounds
on the approximation error ‖T −ET̂‖HS necessarily depend on smoothness
properties of the density f which may be unknown to the analyst.

We now provide a consistent estimator T̂h of Th, and derive further below
(Proposition 3.1) a data-driven bound τ̂h(N) on the estimation error ‖T̂h −
Th‖HS . Note that the function fh defined in equation 2.5 can be rewritten
as

(3.1) fh(x1, x2) = EKh(x1 −X1)Kh(x2 −X2).

Given an i.i.d sample {Xi}Ni=1, a natural estimator for the operator Th is
given by:

(3.2) [T̂h(w)](x2) =

∫
R
w(x1)f̂h(x1, x2)dx1,

for any w ∈ L2(R), with the function f̂h given by the sample analogue of
equation 3.1, i.e,

(3.3) f̂h(x1, x2) =
1

N

N∑
i=1

Kh(x1 −X1i)Kh(x2 −X2i).

Since Ef̂h(x1, x2) = fh(x1, x2), we have ET̂h = Th (see Blanchard, Bousquet
and Zwald [4] for the definition of the expectation of a Hilbert space valued
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random variable, and note that the random variables T̂h take their values
in the space of Hilbert-Schmidt operators). For each x = (x1, x2) ∈ R2 and
h > 0, let Th,x : L2(R)→ L2(R) denote the rank-one operator defined by

(3.4) Th,x = Kh(x2 − ·)⊗Kh(x1 − ·).

The following proposition provides a non-asymptotic data-driven bound on
the estimation error ‖T̂h − Th‖HS = ‖T̂h − ET̂h‖HS , with T̂h defined as in
equation 3.2. As noted above, the main tools that we use to derive bounds on
the estimation error are concentration inequalities. The proof of the propo-
sition is provided in Section 5.

Proposition 3.1. Let X ′ be an independent copy of X. For all 0 < δ <
1 and for all N ≥ 2, the following inequality holds with probability greater
than 1− δ

(3.5) ‖T̂h − Th‖HS ≤
2Lhln(2/δ))

N
+

√
ln(2/δ)E‖Th,X − Th,X′‖2HS

N

where Lh =: supx,x′∈R2 ‖Th,x − Th,x′‖HS. Moreover, if 0 < δ < 1/2, then the
following inequality holds with probability greater than 1− 2δ

(3.6)

‖T̂h − Th‖HS ≤
2Lhln(2/δ))

N
+√√√√√ ln(2/δ)

N

 1

N(N − 1)

∑
i 6=j
‖Th,Xi

− Th,Xj
‖2HS + L2

h

√
ln(1/δ)

N


Remark 3.1. From the proof of Proposition 3.1, the supremum in the

definition of Lh can be replaced by the supremum over the support of X
(instead of all of R2). However, we have opted for the supremum over all
of R2 to make Lh distribution free (not dependent on the distribution of
X). Note that the bound on the right-hand side of inequality 3.6 can be
computed from the data. Indeed, the quantities Lh and ‖Th,Xi

− Th,Xj
‖2HS

can be computed explicitly (or bounded) as they only depend on the kernel
K and the bandwidth h, which are both chosen by the analyst. The right-
hand size of inequality 3.5, on the other hand, depends on the expectation
E‖Th,X − Th,X′‖2HS and cannot be computed from the data. Although Theo-
rem 3.1 below is established with the threshold given by the right-hand side
of inequality 3.6 (equation 3.7 below), when we implement the method in
Section 4, the threshold that we use will be based on the right-hand side
of inequality 3.5 (where we will replace E‖Th,X − Th,X′‖2HS by its sample
analogue 1

N(N−1)

∑
i 6=j ‖Th,Xi

− Th,Xj
‖2HS).
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Let τ̂h(N, δ) be defined by
(3.7)

τ̂h(N, δ) :=
2Lhln(2/δ))

N
+√√√√√ ln(2/δ)

N

 1

N(N − 1)

∑
i 6=j
‖Th,Xi

− Th,Xj
‖2HS + L2

h

√
ln(1/δ)

N


and for each j ∈ {1, · · · , N}, define

(3.8) rj(T̂h) :=

√∑
i≥j

σi(T̂h)2.

Note that τ̂h(N, δ) = oP (1). The following theorem is the main result of
this section, and is a direct consequence of Proposition 3.1 and Hoffman-
Wielandt inequality (equation 2.9).

Theorem 3.1. Suppose that the distribution of X satisfies the mixture
representation of equation 1.1, and for h > 0, let T̂h be defined by equation
3.2. Consider the estimator of rank(T ) given by:

(3.9) M̂ = #{j | rj(T̂h) ≥ τ̂h(N, δ)},

where τ̂h(N, δ) and rj(T̂h) are defined as in equation 3.7 and 3.8. Then, for
any 0 < δ < 1/2, we have

(3.10) P (M̂ ≤ rank(T )) ≥ 1− 2δ,

(3.11)

P ({σrank(T )(Th) > 2τ̂h(N, δ)}∩{‖T̂h−Th‖HS ≤ τ̂h(N, δ)}) ≤ P (M̂ = rank(T )),

and

(3.12) P ({σrank(T )(Th) + ‖T̂h − Th‖HS < τ̂h(N, δ)}) ≤ P (M̂ < rank(T )),

where σrank(T )(Th) denotes the smallest nonzero singular value of Th. As

a consequence, if δ = δ(N) → 0 and ln(1/δ(N)) = o(N), then P (M̂ =
rank(T ))→ 1. Moreover, if Assumption 2.1 is satisfied, then rank(T ) = M

and M̂ is a consistent estimator of M .

Remark 3.2. Inequality 3.10 shows that our choice of threshold τ̂h(N, δ)

guarantees that M̂ is a lower bound on rank(T ) (and hence on M) with
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probability at least 1 − 2δ for any N . Moreover, Inequality 3.11 shows that
M̂ is a non-trivial lower bound on rank(T ) (the trivial lower bound M̂ ≡ 1

satisfies inequality 3.10), and M̂ = rank(T ) with high probability whenever
the threshold τ̂h(N, δ) is much smaller than the the smallest non zero singular
value of Th with high probability (which holds true for large N as τ̂h(N, δ) =

oP (1)). This implies in particular that M̂ will perform well (will be equal
to rank(T ) with high probability) for designs where the smallest nonzero
singular value of Th is well-separated from zero (relative to the sample size).
This is confirmed by our simulation studies; see Figure 1 (a) and (b), which
correspond to design 2 in Section 4, where the largest nonzero singular value
(third in this case) is well away from zero, and note the good performance
of our method on this design in the simulation study. By contrast, inequality
3.12 shows that M̂ will underestimate rank(T ) with high probability if the
smallest non-zero singular value of the operator Th is close to zero and much
smaller than the bound τ̂h(N, δ) on the estimation error; see Figure 1 (c)
and (d), which correspond to design 1 in Section 4, where (as shown by
the figures) the smallest nonzero singular value (third in this case) is close
to zero, and note the poor performance of our method on design 1 in the
simulation study.

Remark 3.3. The results of Theorem 3.1 are valid for any choice of
bandwidth h > 0, and as noted in Remark 3.2, inequality 3.11 implies that
our procedure will correctly estimate rank(T ) with high probability whenever
the smallest non-zero singular value of Th (σrank(T )(Th)) is much larger than

the bound on the estimation error ‖Th− T̂h‖HS (given by τ̂h(N, δ)) with high
probability. It can also be shown that the smallest nonzero singular values
of Th converge to that of T as h→ 0 (Proposition 3.2 below in conjunction
with inequality 2.8) , and that the smallest nonzero singular value of Th
tends to zero as h → ∞. In contrast, for fixed N , the bound τ̂h(N, δ) on
the estimation error ‖Th − T̂h‖HS tends to zero as h → ∞, and tends to
infinity as h→ 0. Therefore, for a fixed sample size N , values of h that are
either very large or very small may lead to thresholds τ̂h(N, δ) that are much
larger than σrank(T )(Th), and inequality 3.12 implies that our procedure will
underestimate rank(T ) for such choices of h. We leave the determination of
“good” data-driven choices of the bandwidth h, as well as the choice of the
kernel K, for future research. In our simulation studies below (Section 4),

we implement M̂ with a bandwidth h given by Silverman’s rule (h ∼ N−1/6

when X ∈ R2).

We now suggest an estimator of the operator T , which is shown to be
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consistent in Proposition 3.2 below. A consequence of Proposition 3.2 (in
conjunction with inequality 2.8) is that the ordered singular values of the
operator Th converge to those of the operator T as h → 0. Unlike Propo-
sition 3.1 above, some additional regularity conditions are needed on the
density f for our estimator of T to be consistent; in particular, we assume
in Proposition 3.2 that f is continuous. It is not difficult to modify the proof
of the proposition to obtain a convergence rate for ‖T̂ −T‖ when f satisfies
additional regularity conditions (twice differentiable for instance).

Proposition 3.2. Suppose that the density f is continuous and com-
pactly supported, and suppose that the kernel K used in equation 3.3 is such
that

∫
K = 1. Let the estimator of T be given by T̂h (defined in equation

3.2) with h = h(N)→ 0 such that Nh2 →∞. Then we have

(3.13) E‖T̂h − T‖ ≤
√
E‖T̂h − T‖2HS = o(1).

The proof of Proposition 3.2 involves the decomposition of the error ‖T̂h−
T‖HS into an approximation bias that controls the difference T − Th, and
an estimation error that controls the difference T̂h − Th. The condition h =
h(N) → 0 is needed to make the approximation bias converge to zero, and
the condition Nh2 → ∞ is needed to make the estimation error converge
to zero. Figure 1 (Box (a) and (b)) provide an illustration of Proposition
3.2; it shows the five largest singular values of the operator T̂h, for h = .05.
Figures 1 ((a) and (b)) correspond to design 2 in Section 4, where the data
is generated from a mixture of three uniforms with equal weights: π0 = π1 =
π3 = 1/3. As noted in Remark 2.1 (equation 2.7), the nonzero singular values
of the operator T for this design coincide with the mixing proportions, and
we have σ1(T ) = σ2(T ) = σ3(T ) = 1/3. Note that the 3 largest singular
values of the estimator T̂h plotted in Figure 1 (Box (a) and (b)) are all close
to 1/3.

Remark 3.4. When K = 2 and one of the components X1 and X2

has dimension greater than one, say X1 = (X11, X22) with X11 and X12 of
dimension one, then the construction of this section can be applied to the
operator associated with the pairs (X11, X2) and (X22, X2), and we can take
as an estimator the maximum of the estimates of the ranks of operators
associated with (X11, X2) and (X22, X2). The same procedure can be applied
to the case K ≥ 2
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(a) Mixture of 3 uniform distributions
(n = 500)

(b) Mixture of 3 uniform distributions
(n = 4000)

(c) Mixture of 3 normal distributions
(n = 500)

(d) Mixture of 3 normal distributions
(n = 4000)

Fig 1: Box and Whisker plot of the largest five singular values of T̂ computed
from Equation 3.14, with h = 0.05. Box (a) and (b) corresponds to data
generated from a mixture of 3 uniform distributions (design 2 in Section 4),
and Box (c) and (d) to a mixture of 3 Normal distributions (design 1 in
Section 4). Note that the three largest singular values of the uniform design
are all close to 1/3 (see Remark 2.1).
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3.1. Computation of singular values. To evaluate M̂ in Theorem 3.1, it
is necessary to provide a procedure for computing the singular values of T̂h.
Let T̂h be as in equation 3.2. As we show in Section 5, the singular values
of T̂h are equal to the singular values of the matrix Âh defined by

(3.14) Âh =
Ŵ

1/2
2h Ŵ

1/2
1h

N
,

with the matrices Ŵ1h and Ŵ2h ∈ RN×N given by

(3.15) [Ŵ1h]i,j = φh(X1i, X1j) and [Ŵ2h]i,j = φh(X2i, X2j)

for 1 ≤ i, j ≤ N , and where the function φh, with domain R2, is defined by

(3.16) φh(a, b) =

∫
Kh(a− u)Kh(b− u)du,

which can be computed in closed form for many choices of the kernel K:

for instance, φh(a, b) = (2h
√
π)−1 exp

(
− (a−b)2

4h2

)
if the kernel K is Gaussian

(K(x) = exp−x2/2√
2π

), and φh(a, b) = 1{|a− b| ≤ 2h}2h−|a−b|
4h2

if the kernel K is

uniform (K(x) = (1/2)1{|x| ≤ 1}). We state the foregoing observations as
a corollary.

Corollary 3.1. The estimator M̂ of Lemma 3.1 with T̂ given by 3.2,
is equivalently given by

(3.17) M̂ = #{j | rj(Âh) ≥ τ̂h(N, δ)},

where the matrix Âh is as defined in equation 3.14, and rj(·) is defined as
in equation 3.8.

3.2. Computation of the threshold rule. In this section, we provide a
numerical procedure to compute the threshold τ̂h(N, δ). When we implement
our method in Section 4 below, we will use the threshold suggested by the
right-hand side of inequality 3.5, as opposed to the one suggested by the
right-hand side of inequality 3.6, i.e, we will use
(3.18)

τ̂h(N, δ) :=
2L̂hln(2/δ))

N
+

√√√√√ ln(2/δ)

N

 1

N(N − 1)

∑
i 6=j
‖Th,Xi

− Th,Xj
‖2HS

.
where L̂h is a sample analogue of Lh, i.e, L̂h =: supi 6=j ‖Th,Xi

− Th,Xj
‖HS .

Note that the latter threshold is essentially obtained from the one given by
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equation 3.7 by dropping the lowest order term (a term of order N−3/4), and
although the latter change is not justified by our results, it has no (relevant)
effect on the performance of our procedure for largeN . For small sample sizes
however (N less than 500), we have observed from our simulation studies
that using the threshold suggested by equation 3.7 makes our method very
conservative (M̂ < M with high probability), and the threshold 3.18 leads
to a more reasonable performance.

To implement the threshold suggested by equation 3.18, it suffices to
provide a procedure to compute ‖Th,x − Th,x′‖2HS for any x = (x1, x2) and

x′ = (x′1, x
′
2) in R2 (note that L̂h =

√
supi 6=j ‖Th,Xi

− Th,Xj
‖2HS). As the

Hilbert-Schmidt norm is an inner product norm, we have

‖Th,x − Th,x′‖2HS = ‖Th,x‖2HS + ‖Th,x′‖2HS − 2〈Th,x, Th,x′〉HS ,

where 〈·, ·〉HS denotes the Hilbert-Schmidt inner product. A straightforward
computation (using the definition of the Hilbert-Schmidt inner product)
yields
(3.19)
‖Th,x − Th,x′‖2HS
= φh(x1, x1)φh(x2, x2) + φh(x′1, x

′
1)φh(x′2, x

′
2)− 2φh(x1, x

′
1)φh(x2, x

′
2),

with the function φh defined by equation 3.16, and the threshold τ̂h(N, δ) of
equation 3.19 can be easily computed from 3.18.

4. Monte Carlo Experiments. In this section, we assess the perfor-
mance of our estimator M̂ on four designs. The performance of M̂ is then
compared to the four procedures suggested by Kasahara and Shimotsu [18]
(SHT, AIC, BIC and HQ). The designs that we consider have M = 3 and
M = 5 mixture components, and for each design we simulate 500 samples
of sizes N = 500 and N = 2000. To compute M̂ for each synthetic sam-
ple, we construct the matrix Âh defined in Equation 3.14, and compute its

singular values. We use the Gaussian kernel, i.e. K(x) = exp−x2/2√
2π

, and the

bandwidth h is chosen according to Silverman’s rule. Finally, we use the
threshold rule τ̂h(N, δ) given by equation 3.18, with δ = 0.05 for all of our
simulations. We consider the following four designs when generating samples
of X. The first design is from Kasahara and Shimotsu [18], and the other
three designs are chosen to highlight different aspects of the data generating
process that affect the performance of our procedure.

1. Design 1 (mixture of 3 normal distributions): (X1, X2) ∼
∑3

m=1
1
3N2(µm, I2)

with µ1 = (0, 0)′, µ2 = (1, 2)′, µ3 = (2, 1)′, and I2 is the 2 by 2 identity
matrix.
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2. Design 2 (mixture of 3 uniform distributions):X1 ∼
∑3

m=1
1
3U(km1,a, k

m
1,b)

and
X2 ∼

∑3
m=1

1
3U(km2,a, k

m
2,b) with (k1

1,a, k
1
1,b) = (k1

2,a, k
1
2,b) = (0, 1), (k2

1,a, k
2
1,b) =

(k2
2,a, k

2
2,b) = (1, 2) and (k3

1,a, k
3
1,b) = (k3

2,a, k
3
2,b) = (2, 3).

3. Design 3 (mixture of 3 normal distributions): (X1, X2) ∼
∑3

m=1
1
3N2(µm, I2)

with µ1 = (0, 0)′, µ2 = (3, 3)′, µ3 = (−3,−3)′, and I2 is the 2 by 2
identity matrix.

4. Design 4 (mixture of 5 uniform distributions):X1 ∼
∑5

m=1
1
5U(km1,a, k

m
1,b)

and
X2 ∼

∑5
m=1

1
5U(km2,a, k

m
2,b) with (k1

1,a, k
1
1,b) = (k1

2,a, k
1
2,b) = (0, 1), (k2

1,a, k
2
1,b) =

(k2
2,a, k

2
2,b) = (1, 2), (k3

1,a, k
3
1,b) = (k3

2,a, k
3
2,b) = (2, 3) , (k4

1,a, k
4
1,b) =

(k4
2,a, k

4
2,b) = (3, 4) , and (k5

1,a, k
5
1,b) = (k5

2,a, k
5
2,b) = (4, 5).

The outcome of the simulations are presented in the tables below (one
table for each design). The implementation of the method of Kasahara and
Shimotsu [18] requires us to choose a value for the parameter M0. We recall
that the parameter M0 in their procedure represents a guess by the analyst of
an upper bound on M , and they recommend using a partition ∆ = ∆1×∆2

of size M0 (|∆1| = |∆2| = M0) when implementing their procedure. We con-
sider the choices M0 = 4 and M0 = 8. The partitions ∆ are then constructed
by partitioning the supports of X1 and X2 into M0 equiprobable (with re-
spect to the empirical distribution) intervals as suggested by Kasahara and
Shimotsu [18].

Table 1: Simulation outcomes for Design 1

N = 500 N = 2000
M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

SVT 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
M0 = 4 SHT 0.021 0.891 0.082 0.006 0.000 0.566 0.414 0.020

AIC 0.004 0.757 0.215 0.024 0.000 0.317 0.609 0.074
BIC 0.464 0.533 0.003 0.000 0.000 0.989 0.011 0.000
HQ 0.092 0.876 0.031 0.001 0.000 0.766 0.226 0.008

M0 = 8 SHT 0.094 0.874 0.032 0.000 0.000 0.690 0.306 0.004
AIC 0.022 0.830 0.148 0.000 0.000 0.384 0.542 0.074
BIC 0.704 0.296 0.000 0.000 0.000 1.000 0.000 0.000
HQ 0.212 0.788 0.000 0.000 0.000 0.954 0.046 0.000

Table 2: Simulation outcomes for Design 2

N = 500 N = 2000
M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

SVT 0.000 0.002 0.996 0.000 0.000 0.000 1.000 0.000
M0 = 4 SHT 0.425 0.000 0.575 0.000 0.520 0.000 0.480 0.000

AIC 0.454 0.000 0.544 0.002 0.452 0.000 0.492 0.056
BIC 0.410 0.000 0.590 0.000 0.497 0.000 0.458 0.045
HQ 0.422 0.000 0.578 0.000 0.520 0.000 0.462 0.018

M0 = 8 SHT 0.382 0.013 0.072 0.523 0.478 0.244 0.002 0.276
AIC 0.362 0.018 0.028 0.592 0.466 0.204 0.000 0.330
BIC 0.339 0.028 0.140 0.493 0.472 0.224 0.004 0.300
HQ 0.352 0.018 0.076 0.554 0.476 0.282 0.000 0.242
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Table 3: Simulation outcomes for Design 3

N = 500 N = 2000
M = 1 M = 2 M = 3 M ≥ 4 M = 1 M = 2 M = 3 M ≥ 4

SVT 0.072 0.928 0.000 0.000 0.000 0.000 1.000 0.000
M0 = 4 SHT 0.000 0.000 0.980 0.020 0.000 0.000 0.950 0.050

AIC 0.000 0.000 0.886 0.114 0.000 0.000 0.882 0.118
BIC 0.000 0.000 1.000 0.000 0.000 0.000 0.992 0.008
HQ 0.000 0.000 0.978 0.022 0.000 0.000 0.958 0.042

M0 = 8 SHT 0.000 0.000 0.940 0.060 0.000 0.000 0.930 0.070
AIC 0.000 0.000 0.824 0.176 0.000 0.000 0.806 0.194
BIC 0.000 0.000 0.992 0.008 0.000 0.000 0.998 0.002
HQ 0.000 0.000 0.964 0.036 0.000 0.000 0.968 0.032

Table 4: Simulation outcomes for Design 4

N = 500 N = 2000
M = 1 M = 2 M = 3 M = 4 M = 5 M ≥ 5 M = 1 M = 2 M = 3 M = 4 M = 5 M ≥ 5

SVT 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
M0 = 4 SHT 0.466 0.000 0.000 0.534 0.000 0.000 0.484 0.000 0.000 0.516 0.000 0.000

AIC 0.475 0.000 0.000 0.525 0.000 0.000 0.478 0.000 0.000 0.522 0.000 0.000
BIC 0.481 0.000 0.000 0.519 0.000 0.000 0.470 0.000 0.000 0.530 0.000 0.000
HQ 0.480 0.000 0.000 0.520 0.000 0.000 0.482 0.000 0.000 0.518 0.000 0.000

M0 = 8 SHT 0.458 0.208 0.013 0.170 0.083 0.068 0.504 0.274 0.000 0.072 0.097 0.053
AIC 0.430 0.212 0.014 0.213 0.075 0.056 0.458 0.328 0.000 0.078 0.089 0.047
BIC 0.415 0.225 0.019 0.227 0.067 0.047 0.449 0.325 0.000 0.109 0.086 0.031
HQ 0.422 0.216 0.022 0.216 0.081 0.043 0.461 0.324 0.000 0.093 0.094 0.028

As a general remark (valid across all designs), and in accordance with

inequality 3.10, our method never overestimates M , i.e, P (M̂ > M) = 0.
However, our method often substantially underestimates M . This is partic-
ularly true for Design 1, where even for a sample size of N = 2000, our
method selects 1 component in all of our Monte Carlo samples. Indeed, even
for N = 4000 (not reported in the tables), our method selects at most 2

components in all the Monte Carlo samples, and P (M̂ = 2) ≈ .84. As noted
in Remark 3.2, we expect our approach to yield very conservative estimates
of M if the singular values of the operator T are very close to zero (relative
to the sample size). From Figure 1 (Box (d)), we see that the (estimated)
second largest singular value of T in Design 1 is very small (approximately
equal to 0.05), which is smaller in magnitude than our bound τ̂h(N, δ) on
the estimation error (the average value of the threshold τ̂h(N, δ) in our sim-
ulation when N = 2000 is 0.0647 with a standard deviation of 0.0029). By
contrast, the methods of Kasahara and Shimotsu [18] perform better on De-
sign 1, and AIC selects the correct number of components (M = 3) 61% of
the time when N = 2000.

In Design 2, all nonzero singular values of T are equal to 1/3 (see Remark
2.2), hence much larger in magnitude than those of design 1. And as can be

expected from inequality 3.11, our estimator performs quite well; M̂ always
selects 3 components when N = 2000, and the selection frequency for M = 3
is close to 1 when N = 500. By contrast, all the methods of Kasahara and
Shimotsu [18] perform poorly on this design, with their best method (BIC)
selecting M = 3 with a frequency of approximately 50% when N = 2000
and M0 = 4. Moreover, all of their estimation procedures tend to substan-
tially overestimate the true number of components when M0 = 8, with AIC
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selecting M ≥ 4 approximately 30% of the time when N = 2000. From this
design and Design 4 below, we observe that the methods of Kasahara and
Shimotsu [18] seem to perform poorly when the support X is “irregular”
and the matrix P∆ is sparse (has many zeros).

Design 3 combines the desirable aspects of Design 1 and 2: the variable
X has full support as in Design 1, and the nonzero singular values of the op-
erator T have moderate size as in Design 2 (from simulations σ3(T ) ≈ 0.1).
Our method as well as the procedures of Kasahara and Shimotsu [18] per-
form well on this design, with their methods performing better for smaller
sample sizes (BIC selects 3 components in all of our simulations). However,
the performance of their procedures decrease when the number of partitions
is increased (M0 = 8), and AIC tends to overestimates the number M even
when N = 2000 (by as much as 20% of the time when M0 = 8) (as noted in
Kasahara and Shimotsu [18], the method AIC is not necessarily consistent,
and it will tend to overestimate the rank of P∆ when N is large).

Design 4 is a variation of Design 2 (also a mixture of uniforms), where
M = 5 and the nonzero singular values of T are smaller (all five nonzero
singular values of T are equal to 1/5). As the nonzero singular values of
T are smaller in comparison to those of design 2, the performance of our
method deteriorates relative to design 2. Indeed, our method underestimates
M with higher frequency and we have P (M̂ = 3) ≈ 1 (recall that M = 5
in Design 4). However, when N = 2000 our method selects the true number
of components in all of the Monte Carlo samples. As in Design 2, the meth-
ods of Kasahara and Shimotsu [18] do not perform well on this design. We
recall here that given an upper bound M0 on M , the procedures of Kasa-
hara and Shimotsu [18] yield an estimate of a lower bound on M that is at
most equal to M0. We see here that when the upper bound is incorrectly
specified M0 = 4, all of their procedures select M = 4 approximately 50%
of the time when N = 2000. When M0 = 8, all of their procedures select
the true number of components in approximately 10% of the simulations
when N = 2000. As noted above, the poor performance of their procedures
is probably due to the fact that the support of X is highly “irregular” and
that the matrices P∆ are sparse.

5. Proofs.

Proof. (Proof of Proposition 2.1) By equation 1.1 T has the repre-
sentation T =

∑M
m=1 πmf

m
2 ⊗ fm1 . Let M1 (resp. M2) denote the subspace

of L2(S1) (resp L2(S2)) spanned by the functions {fm1 }Mm=1 (resp. {fm2 }Mm=1

). Under Assumption 2.1, the subspaces M1 and M2 have dimension M .
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Let 〈·, ·〉1 denote the inner product on L2(S1). For ω ∈ L2(S1), we have

T (ω) =

M∑
m=1

πmf
m
2 〈fm1 , ω〉1

which is an element ofM2, and the range of the operator T is thus a subspace
of M2 which has dimension at most M (dimension equal to M when 2.1
holds). To show that the range of T has dimension M under Assumption
2.1, it thus suffices to show that each fm2 belongs to the range of T . Let
ωm be equal to the residual of the projection of fm1 on the subspace of
M1 spanned by the functions {fm′

1 }m′ 6=m normalized to have norm 1 (with
respect to the norm on L2(S1)). The latter operation is well defined by the
linear independence of the functions {fm1 }Mm=1. Then < ωm, f

m′
1 >= δmm′

(the Kronecker delta), and we have T (ωm) = fm2 . We thus conclude that
range of T spans M2 and it has dimension M .

Proof. (Proof of Proposition 2.2) From equations 2.3, 2.4 and 2.5,
we get

[Th(ω)](x2) =

∫
R
ω(x1)

∫
R2

f(u, v)Kh(x1 − u)Kh(x2 − v)dudvdx1

=

∫
R
ω(x1)

∫
R2

rank(T )∑
m=1

σmvm(v)um(u)Kh(x1 − u)Kh(x2 − v)dudvdx1

=

rank(T )∑
m=1

σm vm ? Kh(x2)

∫
R
ω(x1)um ? Kh(x1)dx1,

and we conclude that

(5.1) Th =

rank(T )∑
m=1

σm vm ? Kh ⊗ um ? Kh.

Here um ? Kh (similarly for vm ? Kh) denote the convolution um and Kh

defined by

um ? Kh(x1) =

∫
R
um(u)Kh(x1 − u)du.

Given ω ∈ L2(R), let F [ω] denote its Fourier transform. We have F [um ?
Kh] = F [um]F [Kh] and F [vm ? Kh] = F [vm]F [Kh], and the linearity and

invertibility of the Fourier transform imply that {um ? Kh}
rank(T )
m=1 is lin-

early independent if and only if {F [um ?Kh]}rank(T )
m=1 is linearly independent.
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Since F [Kh] is non-vanishing by assumption, the linear independence of

{F [um ? Kh]}rank(T )
m=1 is equivalent to that of {F [um]}rank(T )

m=1 . By linearity

and invertibility of the Fourier transform, the functions {F [um]}rank(T )
m=1 are

linearly independent since the functions {[um}rank(T )
m=1 are linearly indepen-

dent (they are orthonormal). We thus conclude that {um ? Kh}
rank(T )
m=1 and

{vm ? Kh}
rank(T )
m=1 are both sets of linearly independent functions. An argu-

ment similar to that used in the proof of Proposition 2.1 then yields that
the operator Th given by equation 5.1 has rank equal to rank(T ).

Proof. (Proof of Proposition 2.4) We first establish identity 2.15.
Let a ∈ R|∆1|, b ∈ R|∆2|, and let 〈·, ·〉2 denote the inner product on L2(S2).
We have

bTΓ∗∆2 ◦ T ◦ Γ∆1(a) = 〈Γ∆2(b), T ◦ Γ∆1(a)〉2

=

|∆1|∑
i=1

|∆2|∑
j=1

aibj

∫
δ2j

∫
δ1i

f(x1, x2)dx1dx2

=

|∆1|∑
i=1

|∆2|∑
j=1

aibj [P∆]i,j

= aTP∆b,

which establishes identity 2.15, and inequality 2.16 is a direct consequence.
We now prove that inequality 2.16 is an equality for some partitions ∆. The
singular value decomposition 2.3 of the integral operator T implies that P∆

has the following representation (contrast to equation 2.14)

(5.2) P T∆ =

rank(T )∑
m=1

σmQ
m
2 ⊗Qm1

where Qm1 (with a similar expression for Qm2 ) is a vector in R|∆1|, with ith el-
ement given by [Qm1 ]i =

∫
δ1i
um(x1)dx1 (note that identity 5.2 yields an alter-

native proof of inequality 2.16). Here the functions um are the eigenfunctions
of T ∗T that appear in the singular value decomposition 2.14. Since the func-

tions {um}rank(T )
m=1 ( resp. {vm}rank(T )

m=1 ) are orthonormal, they are necessarily
linearly independent. Hence there exist partitions ∆1 (resp. ∆2) of the sup-

port of X1 (resp. X2) such that the vectors {Qm1 }
rank(T )
m=1 (resp.{Qm2 }

rank(T )
m=1 )
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are linearly independent (see the proof of Proposition 3−part (a)−in Kasa-
hara and Shimotsu [18]); it then follows by an argument similar to that used
in the proof of 2.1 that rank(P∆) = rank(T ) for such a partition ∆.

Proof. (Proof of Proposition 3.1) Let ξi be defined by ξi = Th,Xi
−

ETh,X , and note that if X ′ is an independent copy of X, then we have
‖ξi‖HS ≤ E‖Th,X − Th,X′‖HS ≤ Lh (with Th,Xi

defined as in equation 3.4).
Using Lemma 2 in Smale and Zhou [25], where the Hilbert space H is that
of the Hilbert-Schmidt operators on L2(R), and the Hilbert space valued
random element is given by ξi, we get

‖T̂h − Th‖HS = ‖(1/N)
N∑
i=1

ξi‖HS ≤
2Lhln(2/δ))

N
+

√
2ln(2/δ)E‖ξi‖2HS

N

with probability greater than 1 − δ. To obtain inequality 3.5 from the pre-
ceding inequality, note that if X ′ = (X ′1, X

′
2) is an independent copy of

X = (X1, X2), we have

E‖Th,X − Th,X′‖2HS

= 2E

∫
R2

(Kh(X1 − x1)Kh(X2 − x2)− E{Kh(X1 − x1)Kh(X2 − x2)})2 dx1dx2

= 2E‖Th,X − ETh,X‖2HS = 2E‖ξi‖2HS .

To obtain inequality 3.6 from 3.5 we use Hoeffding’s concentration in-
equality (for U-statistics Hoeffding [12]), which yields:

E‖Th,X − Th,X′‖2HS ≤
1

N(N − 1)

∑
i 6=j
‖Th,Xi

− Th,Xj
‖2HS + L2

h

√
ln(1/δ)

N

with probability greater than 1− δ.

Proof. (Proof of Proposition 3.2) By the definition of the operator
norm, we have:

‖T̂−T‖ = sup{
‖w‖L2(S1)

≤1
}
[∫
S2

(∫
S1
w(x1)(f(x1, x2)− f̂(x1, x2))dx1

)2

dx2

]1/2

.

Using Minkowski’s integral inequality, the left-hand side is bounded by:

‖T̂−T‖ ≤ sup{
‖w‖L2(S1)

≤1
}
∫
S1
|w(x1)|

(∫
S2

(f(x1, x2)− f̂(x1, x2))2dx2

)1/2

dx1.
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Cauchy-Schwartz inequality then yields

‖T̂ − T‖2 ≤
∫
S1

∫
S2

(f(x1, x2)− f̂(x1, x2))2dx2dx1,

and we get

(5.3) E‖T̂−T‖2 ≤
∫
S1

∫
S2
E(f(x1, x2)−f̂(x1, x2))2dx2dx1 = E‖T̂−T‖2HS .

The middle term of the latter inequality represents the integrated mean-
squared error (IMSE) of the estimator of the density f̂ , which by standard
arguments decomposes into a bias and variance term, and the conditions
h → 0 and Nh2 → ∞ imply respectively that the bias and the variance
terms converge to zero. The conclusion of Proposition 3.2 then follows from
Jensen’s inequality.

Proof. (Proof of Lemma 3.1) Note that under the mixture represen-
tation 1.1, the singular values of T satisfy: σR(T ) > 0 and σR+1(T ) = 0,
where R denotes the rank of T . Also, by inequality 2.9 and the triangle
inequality, for all j ∈ {1, · · · , N}, we have

(5.4) |rj(T̂h)− rj(Th)| ≤ ‖Th − T̂h‖HS ,

where rj(T̂h) is defined as in equation 3.8. Given the result in Proposition
3.1, to establish inequality 3.10, it suffices to show that {‖T̂h − Th‖HS ≤
τ̂h(N, δ)} ⊂ {rR+1(T̂h) < τ̂h(N, δ)}. The latter is a direct consequence of
inequality 5.4, as rR+1(T̂h) ≤ rR+1(Th) + ‖Th − T̂h‖HS and rR+1(Th) = 0.
To establish inequality 3.11, it suffices to show that

(5.5)
{σR(Th) > 2τ̂h(N, δ)} ∩ {‖T̂h − Th‖HS ≤ τ̂h(N, δ)}
⊂ {rR(T̂h) ≥ τ̂h(N, δ} ∩ {rR+1(T̂h) < τ̂h(N, δ)}.

From inequality 5.4, we have rR(T̂h) ≥ rR(Th) − ‖Th − T̂h‖HS = σR(Th) −
‖Th − T̂h‖HS ≥ τ̂h(N, δ) on the event {σR(Th) > 2τ̂h(N, δ)} ∩ {‖T̂h −
Th HS| ≤ τ̂h(N, δ)}. In addition, as in the proof of inequality 3.10, rR+1(T̂h) <
τ̂h(N, δ) on the event {‖T̂h − Th‖HS ≤ τ̂h(N, δ)}. Therefore, the inclusion
5.5 holds, and inequality 3.11 follows. Finally, to establish inequality 3.12,
it suffices to verify the inclusion

(5.6) {σR(Th) + ‖T̂h − Th‖HS < τ̂h(N, δ)} ⊂ {rR(T̂h) < τ̂h(N, δ}},

which follows from inequality 5.4, as rR(T̂h) ≤ rR(Th) + ‖Th − T̂h‖HS =
σR(Th) + ‖Th − T̂h‖HS .
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Proof. (Proof of Corollary 3.1) Given the random sample {Xi}Ni=1,
define the random vector spaces Ĥ1 and Ĥ2 by

Ĥ1 = span{Kh(X1i−·)|i = 1, · · · , N} and Ĥ2 = span{Kh(X2i−·)|i = 1, · · · , N}.

Note that the operator T̂h has range in Ĥ2. Indeed, for w ∈ L2(S1), we have

(5.7) [T̂h(w)](x2) = (1/N)
N∑
i=1

Kh(X2i − y)

∫
S1
w(x)Kh(X1i − x1)dx1.

Moreover, since the kernel K has compact support, the vector spaces Ĥ1 and
Ĥ2 have dimension equal to N , as long as the X1i’s and the X2i’s are all
distinct, and the latter occurs with probability one (it can be easily shown
that the functions {Kh(X1i−·)}Ni=1 are linearly independent if the X1i’s are
distinct). Let Γ1 : RN → Ĥ1 and Γ2 : RN → Ĥ2 be defined by:

Γ1(a) =
N∑
i=1

aiKh(X1i − ·)

and

Γ2(a) =
N∑
i=1

aiKh(X2i − ·),

where a ∈ RN . Note that

(5.8) ‖Γ1(a)‖2L2(S1) = aT Ŵ1ha and ‖Γ2(a)‖2L2(S2) = aT Ŵ2ha

where the matrices Ŵ1h and Ŵ2h are as defined in equation 3.15. Since the
matrices Ŵ1h and Ŵ2h are symmetric and positive definite (see equation
3.15, and recall that the functions {Kh(X1i−·)}Ni=1 are linearly independent
with probability one), their powers (Ŵ1h)d and (Ŵ2h)d, for any d ∈ R, are
well defined. Let R : RN → Ĥ1 and S : Ĥ2 → RN be defined by

Ra = Γ1(Ŵ
−1/2
1h a) and S(Γ2(a)) = Ŵ

1/2
2h a.

It follows from equation 5.8 that the operators S and R are isometries, i.e,
‖Ra‖L2(S1) = ‖a‖ and ‖S(Γ2(a))‖ = ‖Γ2(a)‖L2(S2). Also, using the represen-
tation of equation 5.7, it can be shown that

(5.9) T̂h(Γ1(a)) = (1/N)Γ2(W1a)

Let 〈·, ·〉 denote the inner product on RN . We show below that the operator
T̃h = ST̂hR : RN → RN has the same singular values as T̂h. Moreover, the
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matrix representation of the operator T̃h is given by Âh in equation 3.14.
Indeed, for a, b ∈ RN , identity 5.9 yields

〈b, T̃ha〉 = 〈b, ST̂hRa〉

= 〈b, ST̂hΓ1(Ŵ
−1/2
1h a)〉

= 〈b, (1/N)SΓ2(Ŵ
1/2
1h a)〉

= 〈b, (1/N)Ŵ
1/2
2h Ŵ

1/2
1h a〉 = 〈b, Âha〉.

It now remains to show that T̃h and T̂h have the same singular values. This
follows by noting that given a singular value decomposition

T̂h =
N∑
i=1

σi(T̂h)v̂i ⊗ ûi

of T̂h, the operator T̃h has the representation

(5.10) T̃h =
N∑
i=1

σi(T̂h)Sv̂i ⊗R∗ûi,

where R∗ denotes the adjoint of R. Since the sets {Sv̂i}Ni=1 and {R∗ûi}Ni=1

are orthonormal (R and S are isometries), 5.10 represents a singular value
decomposition of T̃h, and we conclude that T̃h and T̂h have the same singular
values.
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