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Abstract

This paper derives novel nonparametric identification results for auction models with in-

complete bid data and finite unobserved heterogeneity (UH). By exploiting the Markov prop-

erty of order statistics, I show that the joint distribution of bidders’ valuations and the UH is

point identified from an incomplete set of bids. The result holds if the econometrician either

observes (any) five order statistics of the bids in each auction or only three along with an instru-

ment, and without imposing any functional form restriction on how the UH affects valuations.

I establish these results under weak distributional assumptions: for second price auctions, the

result holds generically over the space of possible distributions of valuations and UH, and for

first price auctions, it holds when the conditional distribution of valuations varies monotoni-

cally with the UH in the reverse hazard rate order. Additionally, I show that identification can

be extended to settings where the number of potential bidders is unobserved, as is often the

case in online auctions.
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1 Introduction

This paper studies the identification of the distribution of bidders’ valuation in settings where

the econometrician only observes an incomplete set of bids from each auction, and where unob-

served heterogeneity (UH) is present. Here, the UH represents valuation relevant characteristics

of the auctioned object that are commonly observed by the bidders but that are unobserved by

the econometrician. In general, identification of the distribution of bidders’ valuations in auction

models is important as it allows the researcher to determine (among other things) bidders’ surplus,

sellers’ profits and to do counterfactual analysis under alternative auction mechanisms. Failing to

account for UH in the econometric analysis, when it is present, can lead to incorrect inference of

the structural parameters and to erroneous policy recommendation (see Krasnokutskaya (2011)).

The papers in the literature that address the problem of UH in auction data, with the exception of a

few, are mainly concerned with settings where the econometrician observes the bids of all auction

participants in the data set. Moreover, the methods that they propose do not extend to settings

where only a subset of the order statistics of the bids are observed, a case that is relevant for many

empirical applications. Incomplete bid data arises naturally for instance in ascending auctions,

where the winner’s bid (exit price) is usually not observed1.

Most papers in the literature that study identification of auction models with incomplete bid

data and unobserved heterogeneity (Roberts (2013) and Freyberger and Larsen (2020)) all rely on

the availability of some auxiliary data: such as public reserve prices, secret reserve prices or in-

struments more generally. Moreover, to achieve identification, these papers either make strong

assumptions on how the auxiliary variable is related to the UH (as in Roberts (2013)) or they rely

on the assumption that the UH affects valuations (hence bids) and the auxiliary variable in an

additively separable way (as in Freyberger and Larsen (2020)). From these papers, it is not clear

whether identification is possible without relying on the availability of auxiliary variables−which

are sometimes not easy to obtain in empirical applications− or without making strong functional

form assumptions on how the UH relates to the observed variables−which may lead to severely

biased estimates of the parameters of interest if the model is misspecified.

In an environment where bidders’ valuations for the auctioned object are private, independent

and symmetric (drawn from the same distribution) given the realization of a discrete UH, I pro-

vide in this paper some novel identification results for both first and second price auctions. The

first identification result shows that the joint distribution of bidders’ valuations and UH is point

identified if the econometrician has access to at least (any) five order statistics of the bids from

each auction in the data set. The result holds without making any functional form assumption

1Recall that in the stylized push-button model of the English auction (see Milgrom and Weber (1982)), prices rise

continuously (or in small increments) from a low value and each bidder chooses when to irreversibly exit the auction by

releasing a pressed button. The auction ends when only one bidder remains and she obtains the object at a price equal

to the exit price of her last competitor. See Roberts (2013) for an empirical example that uses such auctions.
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on how the UH affects the distribution of valuations. In fact, the conditional distribution of val-

uations given the UH is allowed to vary in an unrestricted way (as in Hu, McAdams, and Shum

(2013)); all that is required is that a “full rank” condition on the distribution of the observed order

statistic of the bids is satisfied. In addition, I show that the required rank condition is “generic”

(hence mild) in the context of second price auctions (SPA). This identification result is the first in

the auction literature to show that identification of the distribution of valuations is possible in an

auction environment with incomplete bid data and UH without relying on the availability of some

auxiliary variable 2. It thus answers in part an identification question raised in section 3.2 of Athey

and Haile (2002), concerning the possibility of identification in auction models with UH from only

a strict subset of the order statistics of the bids.

The second identification result in this paper shows that identification (in the same setting)

is possible with only three order statistics of the bids if the econometrician also observes an in-

strument. Unlike Roberts (2013) and Freyberger and Larsen (2020), I allow the UH to change the

distribution of the instrument in an unrestricted way; all that is required −in analogy to the usual

relevance condition on the instrument in the linear IV model− is that the set of conditional distri-

butions of the instrument given different values of the UH satisfy a full rank condition. As in the

first identification result, I also require the distributions of the observed order statistics of the bids

to satisfy a full rank condition. In the context of SPA, I show again that the required full rank con-

dition on the distribution of order statistics of the observed bids holds generically. In the context

of first price auctions (FPA), I provide a simple and easily interpretable monotonicity condition on

the distribution of bidders’ valuation given different values of the unobserved heterogeneity, that

implies the desired full rank condition on the distribution of the observed order statistics of the

bids. The result thus shows that when the econometrician has access to an instrument, identifica-

tion is possible without relying on the strong functional form assumptions used in Roberts (2013)

and Freyberger and Larsen (2020). However, for my identification result to hold, I require that

the econometrician has access to at least three order statistics of the bids (contrast to the result of

Roberts (2013) that only requires one order statistic of the bids, and to the result of Freyberger and

Larsen (2020) that require only two order statistics).

In the context of SPA, I extend my identification results to settings with UH and an unobserved

number of potential bidders. The latter setting is particularly relevant to online auctions where

not all potential bidders place bids, and where substituting the number of actual bidders (those

that place bids) for the number of potential bidder may lead to incorrect inference of the bidders’

valuations when the two differ. In the latter setting (which is the one considered in Freyberger and

Larsen (2020)), I show that identification is again possible under similar mild rank conditions on

2Subsequent to the writing of this paper, Luo and Xiao (2021) have established a similar identification result. In par-

ticular, they show that identification of the joint distribution of valuations and UH is possible if at least three consecutive

order statistics of the bids are observed.
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the distribution of the observed order statistics of the bids.

The main observation that I use throughout the paper to establish these new identification re-

sults is the fact that order statistics satisfy the “Markov property”. Loosely speaking the Markov

property of order statistics states that, conditional on any intermediate order statistics, any two

non-consecutive order statistics (from i.i.d draws from a continuous distribution) are independent.

This property allows me to conclude that nonconsecutive order statistics of the bids are indepen-

dent once I condition on the UH and on any intermediate order statistic of the bids. This is partic-

ularly useful as it allows me to represent the distribution of the observed order statistics of the bids

in a form that allows me to exploit the results and proof techniques from the mixture literature.

This paper is the first one in the auction literature (to my knowledge) that uses the Markov prop-

erty of order statistics for identification. The paper contributes to the mixture literature as well, by

establishing identification for a mixture model in a setting where the distribution of the observed

variables are correlated within mixture components.

1.1 Literature review

There is an extensive literature that studies auction models in the presence of unobserved het-

erogeneity. These papers include, among others, Krasnokutskaya (2011), Li, Perrigne, and Vuong

(2000), Athey and Haile (2002), Hu, McAdams, and Shum (2013), Roberts (2013), Armstrong (2013),

Aradillas-Lopez, Gandhi, and Quint (2013), Luo and Xiao (2021) and Freyberger and Larsen (2020).

Models with UH provide a good alternative way to model auction data where the observed bids

are correlated even after controlling for observable covariates that plausibly affect bidders’ valua-

tions. Athey and Haile (2002) (for SPA), Li, Perrigne, and Vuong (2000) (for FPA) and Krasnokut-

skaya (2011) (for FPA) are among some of the earlier papers to study the nonparametric identifi-

cation of auction models in the presence of UH. In all these papers, the UH (which is assumed to

be a continuous random variable) is assumed to either have a multiplicative or an additive effect

on bidders’ valuations, and the identification arguments rely on results from the (classical) mea-

surement error literature, and require observation of (at least) two bidders across an i.i.d sample

of auctions. Hu, McAdams, and Shum (2013) relaxes the assumptions in Krasnokutskaya (2011)

by allowing the distribution of valuations to depend on the unobserved heterogeneity in an un-

restricted way. All that is required is for the conditional distribution of valuations to be strictly

monotone (in a first order stochastic sense) in the UH. However, in contrast to the approach of

Krasnokutskaya (2011), to establish identification the econometrician now needs to observe bids

from (at least) the same three bidders across an i.i.d sample of auctions.

The identification arguments in Athey and Haile (2002), Krasnokutskaya (2011) and Hu, McAdams,

and Shum (2013) are not applicable to settings with incomplete bid data, where the econometrician
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only observes a subset of the order statistics of the bids across an i.i.d sample of auctions. That is

the scenario with which the present paper is concerned. Moreover, Athey and Haile (2002) show

that for FPA and SPA with private values where bidders’ valuations are allowed to be correlated

in an unrestricted way, the joint distribution of bidders’ valuations is not identified from any strict

subset of the order statistics of the bids (even if ones assumes that the joint distribution of valuation

is symmetric). I show below that if the correlation of bidders’ valuations arises through a model

of conditionally independent private values (CIPV) with finite UH, then the joint distribution of

bidders’ valuations and the UH can be identified from some strict subset of order statistics of the

bids. Like Hu, McAdams, and Shum (2013), I do not make any functional-form assumption on

how the UH determines valuations.

Other papers in the auction literature that study auction models with UH and incomplete bid

data include (among others) Roberts (2013), Aradillas-Lopez, Gandhi, and Quint (2013), Arm-

strong (2013), Freyberger and Larsen (2020) and Luo and Xiao (2021). In a private value setting

with continuous UH, Roberts (2013) establishes the identification of the conditional distribution

of valuations given the UH from the joint distribution of any order statistics of the bids and the

reserve price. Although Roberts (2013) allows the UH to affect the distribution of valuations in an

unrestricted way, the reserve price is required to be a strictly monotonic function of the UH for his

identification argument. In the present paper, when an instrument is used to obtain identification,

I allow it to be related to the UH in a much weaker way (which will be made clear below); the

instrument is allowed (in particular) to be a non-degenerate random variable after conditioning

on the UH (and all observable covariates), which makes it applicable to settings where the sellers

may have some private information about the object being auctioned that they use to set reserve

prices (see the discussion following Remark 3.4). Freyberger and Larsen (2020) establish the iden-

tification of the joint distribution of bidders’ valuations and the UH, in a setting with incomplete

bid data where the number of potential bidders is also unobserved. Since their results rely on clas-

sical measurement error arguments, they assume that the UH affect the distribution of bidders’

valuations and the instrument (the secret reserve price) in an additively separable way. The results

of the present paper do not rely on such strong functional-form restrictions. Armstrong (2013)

and Aradillas-Lopez, Gandhi, and Quint (2013) establish partial identification results (for FP and

ascending auctions respectively) in a CIPV setting with UH (which they both allow to be of un-

restricted dimension) from the distribution of the highest bid. Their partial identification results

concern, however, lower dimensional parameters like seller’s profit and bidder’s surplus, whereas

the present paper is concerned with a much deeper structural parameter: the distribution of bid-

ders’ valuations. Subsequent to the writing of this paper, Luo and Xiao (2021) have shown that the

identification results of this paper can be strengthened if the observed order statistics of the bids

are required in addition to be consecutive. In particular, they show that the joint distribution of
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valuations and UH is identified from either 3 consecutive order statistics of the bids, or two consec-

utive order statistics of the bids and an instrument.

The present paper is also related to the literature on the nonparametric identification of mix-

tures models. Related papers from that literature include (among others) Hall and Zhou (2003),

Elizabeth, Matias, and Rhodes (2009), Bonhomme, Jochmans, and Robin (2014), Bonhomme, Jochmans,

and Robin (2016), Kasahara and Shimotsu (2014) and Kasahara and Shimotsu (2009). The setup in

these papers is one where the econometrician observes an i.i.d sample of d covariates that are con-

ditionally independent given the realizations of some finite UH, and the goal is to recover the joint

distribution of the covariates and the UH. it is shown in the finite mixture literature (see above

cited papers) that identification obtains if there are at least three covariates (d ≥ 3) and a full-rank

condition is satisfied. In the setting of the present paper the distribution of the observed bids is a

finite mixture. However, the results from the mixture literature are not directly applicable, as order

statistics of the bids are necessarily correlated, even after conditioning on the UH. I overcome this

correlation by exploiting the Markov property of order statistics.

The rest of the paper is organized as follows. Section 2 introduces the model and discusses

some of the assumptions that are needed for the identification results, and Section 3 states all the

identification results. All the proofs omitted from the main text, as well as a subsection on the

mathematical notation used throughout the paper, are provided in the appendix.

2 Model

I now describe the model that is used throughout most of the paper. In each auction t, a single

and indivisible object is auctioned to It ≥ 2 risk neutral bidders indexed by i. At each auction t,

bidders learn their private values Vit ∼ FVit which can depend on a set of auction level covariates

(Xt, Ut), but not on the random variable It. Here Xt ∈ Rd (Xt is allowed to have continuous or

discrete components) and Ut is discrete with finite support U 3. It is assumed that both Xt and Ut

are observed by the bidders, but that the econometrician only observes Xt. The covariates Xt and

Ut can respectively be thought of as observed and unobserved (to the analyst) characteristics of

the auctioned object that affect bidders’ valuations. I will refer to the variable Ut as the auction

level unobserved heterogeneity (UH). Before stating the assumptions of the model, I provide an

illustrative example.

Example 2.1. Consider an auction for used cars where all the auction participants are allowed to

3Some of the identification results in this paper (theorems 3.9 and 3.10) can be extended to a setting with continuous

UH, by replacing the full rank conditions in assumptions 3.3 and 3.2 with completeness conditions on the corresponding

operators (see Hu and Schennach (2008)). It is not clear however whether results similar to those in sections 3.1 and 3.2

can be established in the setting with continuous UH.
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inspect the cars prior to placing their bids. There are many characteristics of the cars being auc-

tioned (and of the auction itself) that may reasonably be assumed to be commonly observed by the

bidders and to affect their valuations. These car attributes include among others the car’s make,

model, mileage, and transmission type. The subset of these characteristics that the econometrician

observes will constitute the vector Xt, and Ut will denote the remaining subset of characteristics

that the econometrician does not observe (which I assume are all discrete variables). It can be the

case for instance that the econometrician observes all the relevant car attributes to the exception

of the condition of the car’s body, which is modelled as a categorical variable with three values:

Ut ∈ U := {good, f air, bad}.

The main informational assumption that I maintain throughout the paper is that the bidders’

valuations are independent and symmetric conditional on (Xt, Ut). For notational simplicity, I will

omit Xt onwards; all arguments and results can thus be understood as being made conditional on

the observed covariates Xt. Formally, we have:

Assumption 2.2. (Conditional IPV) The joint distribution of bidders’ valuations FV in an auction

with I0 bidders satisfies

FV(v1, · · · , vI0) = ∑
u∈U

P(U = u)
I0

∏
i=1

FV|U(vi|U = u), (2.1)

where FV|U denotes the marginal distribution of private values given U, which I assume to

have a closed interval [cu, du] for support4, with du > cu, and a continuous density fV|U=u which is

strictly positive at every point in (cu, du).

Assumption 2.3. (Exogenous entry) It ⊥ (Vit, Ut). 5

I will assume throughout that there is no reserve price (or a non-binding one) and that the

observed bids are the equilibrium bids of the auction format under consideration, and satisfy:

Bit = β(vit, Ut, It), (2.2)

for some strictly increasing and continuously differentiable (in its first argument) function β. In the

case of SPA, I will assume that players play their weakly-dominant strategy that consists in bidding

their valuations (β(vit, ut, It) = vit). Note that for second price auctions, the model described

above is observationally equivalent to a model where bidders do not observe the variable U (see

4The lower bounds cu are assumed to be non-negative, and I allow the upper and lower bounds to vary with different

values of the unobserved heterogeneity.
5 It will be clear from the proof of the identification results presented below (with the exception of those in Section

3.3) that this assumption is not necessary for identification, and all the arguments in the proof of identification will still

hold if they are made conditional on auctions of a fixed size I0. The main importance of this assumption is that it allows

one to pool auctions of different sizes for estimation.
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Li, Perrigne, and Vuong (2000)); In both models the bids are equal to bidders’ valuations, and

whether or not the variable U is observed by the bidders is irrelevant for their bids. Therefore, in

the case of a SPA, our identification results presented below extend to settings where the variable U

is also unobserved by the bidders6. The direct extension of our identification results to the setting

where the variable U is also unobserved by the bidders will, however, not be possible for other

auction formats (FPA for instance) where whether or not U is observed has behavioral implication

for the bidders. When I consider FPA, I will assume that for each value of U, the bidders play the

unique symmetric, increasing and differentiable Bayesian Nash equilibrium strategy, which exists

under the assumptions made on FV|U in 2.1 (see Athey and Haile (2002)).

As mentioned in the introduction, I will consider a scenario where only a subset of the order

statistics of the bids is observed by the econometrician. With that end in mind, I will denote by B(i)
t

(i = 1, · · · , It) the ith largest order statistic in auction t (which has It bidders); we have for instance

B(1) = max{B1, B2, · · · , BIt} and B(It) = min{B1, B2, · · · , BIt}. Let i1 < i2 < · · · < ir denote the

indices of the observed order statistics of the bids, where it is assumed that r < It for each auction

t.

Example 2.4. Ascending auctions constitute an example of an auction format where incomplete bid

data arise naturally. In the stylized model of ascending auctions, the push-button auctions, prices

rise continually (from a very small value) and each of the I bidders chooses when to (irreversibly)

exit the auction by releasing a pressed button. The auction ends when the second to last bidder

exits, and the last remaining bidder is awarded the object at a price that is equal to the exit price

of her last competitor. A dominant strategy equilibrium for the bidders (in the private value envi-

ronment) in this setting is to exit the auction when the selling price reaches their reservation value

(see Athey and Haile (2002)). Therefore, by design, we can never observe the bid (which are the

exit prices in this case) of the bidder with the highest valuation, and we observe at most the lowest

I − 1 order statistics of the bids.

Example 2.5. Another reason why the econometrician may only observe an incomplete set of order

statistics of the bids, can simply be due to the fact that only a subset of the order statistics of the

bids are recorded in the data. It is for instance not uncommon in large FP sealed bid auctions,

where all the bids are observed by the auctioneer at the time of the auction, to only have records

of the top two (or more) bids in the data.

Since the model described above is observationally equivalent to one where a different labelling

is used to denote the different values of the UH, I normalize the support of U to U = {1, · · · , N},
where N denotes the cardinality of U which I assume to be possibly unknown to the econometri-

6When the variable U is unobserved by the bidders, the above model is an affiliated private value model, with a

particular affiliation structure given by Assumption 2.2 (see Milgrom and Weber (1982) or Li, Perrigne, and Vuong

(2002))

8



cian. By assumption 2.1, the distribution of the observed bids satisfies (see 2.3)

FB(i1),··· ,B(ir)|I(bi1 , · · · , bir |I) =
N

∑
n=1

P(U = n)FB(i1),··· ,B(ir)|U,I(bi1 , · · · , bir |U = n, I). (2.3)

The left-hand side (LHS) of 2.3 is identified from observation of an i.i.d sample of the correspond-

ing order statistics of the bids (and It), and the goal is to identify all the terms that appear on the

right-hand side (RHS) of 2.3 7. Since the distribution of any order statistics of the bids (condi-

tional on a fixed value of I) is sufficient to identify the distribution of bidders’ valuations in an

auction model (both first and second price) with symmetric independent private values and no

unobserved heterogeneity (see Athey and Haile (2002)), the identification of FB(i1),··· ,B(ir)|U,I will im-

ply (using results in Athey and Haile (2002)) that FV|U (see 2.1) is identified. Indeed, in the case of

SPA, identification of distribution of an order statistics of the bids F
B(ij)|U,I

(for some j = 1, · · · , r)

imply the identification of the distribution of the corresponding order statistic of valuations (since

the bids in this case correspond to players’ valuations). Furthermore, the distribution of any order

statistic of valuations (from independent draws) identifies the underlying distribution of valua-

tion; this follows from the fact that the CDF of any order statistic of valuations is a known mono-

tone transformation of the underlying CDF of valuations (see Lemma 5.2).

For FPA, the marginal distribution of bids FB|U,I is identified from the distribution of any order

statistic of the bids F
B(ij)|U,I

(for some j = 1, · · · , r) (see Lemma 5.2), and the marginal distribution

of valuations FV|U is identified from the marginal distribution of bids FB|U,I using the first order

condition of player’s maximization problem (see Guerre, Perrigne, and Vuong (2000)):

V = ζ(B, FB|U,I , I) = B +
1

I − 1
FB|U,I(B)
fB|U,I(B)

(2.4)

where fB|U,I denotes the density of B conditional on U. In equation 2.4, the random variable B that

appears on the RHS has a distribution given by FB|U,I and the variable V that appears on the LHS

has distribution given by FV|U . Hence if FB|U,I is identified for some fixed value of the random

variable I, then the function ζ(·, FB|U,I , I) in 2.4 is identified, and the distribution FV|U is identified

as the distribution of variable V = ζ(B, FB|U,I , I), where B ∼ FB|U,I . Therefore, for both FP and

SPA, our identification problem reduces to studying under what conditions the terms on the RHS

of 2.3 are identified from the distribution on its LHS.

The structure of 2.3 is very much different from that of mixture models considered in the lit-

erature on nonparametric identification of mixtures (see Elizabeth, Matias, and Rhodes (2009),

Bonhomme, Jochmans, and Robin (2014), Bonhomme, Jochmans, and Robin (2016) and Kasahara

and Shimotsu (2014)). The mixture model considered in these papers is one where the observed

7Here and in what follows, identification is understood to mean up to label swapping of the various components of

the mixture.
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variables, say X1, X2, · · · , Xp are conditionally independent given the realizations of some finite

unobserved heterogeneity Θ (say with support {1, · · · , N}), which yields the following expres-

sion (similar to 2.1):

P(X1 ≤ x1, X2 ≤ x2, · · · , Xp ≤ xp) =
N

∑
n=1

P(Θ = n)
p

∏
j=1

P(Xj ≤ xj|Θ = n). (2.5)

The multiplicative structure on the RHS of 2.5 is however not possible in our setting where the

observed variables are order statistics, as they are necessarily correlated (after conditioning on the

Ut and It). Indeed, conditional on the largest order statistic (out of I0 independent draws from

some distribution) taking a specific value, all other order statistics are constrained to take smaller

values. In the next section, I will show how the Markov property of order statistics (see Lemma

3.1) can be exploited to rewrite equation 2.3 in a form that is similar to 2.5.

3 Identification

Before proceeding to the identification argument, I first state a lemma that recalls the Markov

property of order statistics. The original statement and proof of this result can be found in Kol-

mogorov (1933) (see also Aron and Navada (2003) for a more recent treatment).

Lemma 3.1. (Markov Property) Let Wi (i = 1, . . . , I0) represent i.i.d draws from some continuous dis-

tribution F, then the corresponding order statistics W(i) (i = 1, · · · , I0) satisfy

W(k)|
(

W(k+1), · · · , W(I0)
)
∼W(k)|W(k+1)

for any 1 ≤ k ≤ I0 − 2.

Lemma 3.1 implies for instance that for a fixed number of bidders I0, the observed bids B(i1)

and B(i3) are conditionally independent given B(i2) and U (recall that i1 < i2 < i3). I will use such

arguments below to rewrite equation 2.3 in a form that allows me to exploit techniques from the

mixture literature and to identify all variables on the RHS of 2.3. I now proceed to introduce some

additional assumptions that I will require for identification.

I establish below identification of my model under two distinct scenarios that are determined

by the structure of the data that is available to the econometrician. In the first scenario, I will

assume that the econometrician can observe an instrumental-like variable that is conditionally

independent of the distribution of valuations given the UH. In this case I establish identification

of the RHS of 2.3 if the econometrician observes in addition three order statistics of the bids across

an i.i.d sample of auctions, if these order statistics of bids satisfy a full rank condition, and if the

instrument satisfies exclusion-restriction and relevance-like conditions. In the second scenario, I
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will assume that the econometrician can observe at least five order statistics of the bids across an

i.i.d sample of auctions. This arises, for example, if the data contains all the exit prices in a push

button English auction where at least six bidders participate, or it can also arise in large auctions

where only few of the top bids (at least five) are recorded in the data (see Example 2.4 and Example

2.5). I show that with this data structure, a full rank condition on the conditional distribution of the

order statistics of the bids suffices to identify all terms on the RHS of 2.3. Formally, the assumptions

are:

Assumption 3.2 (For three order statistics of the bids plus an instrument). For i1 < i2 < i3 ≤ I,

and for some a ∈ R+, the following conditions on the instrument Z and on the players’ bids and

valuations are satisfied:

(V1, · · · , VI) ⊥ Z|U, (3.1)

and the cumulative distribution functions within each of the following sets are linearly indepen-

dent:

{FB(i1)|B(i2)=a,U=1,I , · · · , FB(i1)|B(i2)=a,U=N,I}, {FB(i3)|B(i2)=a,U=1,I , · · · , FB(i3)|B(i2)=a,U=N,I}, (3.2)

and

{FZ|U=1, · · · , FZ|U=N}. (3.3)

Assumption 3.3 (For five order statistics of the bids). For i1 < i2 < · · · < i5 ≤ I, and for some

a, b ∈ R+ with a > b, the cumulative distribution functions within each of the following sets are

linearly independent

{FB(i1)|B(i2)=a,U=1,I , · · · , FB(i1)|B(i2)=a,U=N,I},

{FB(i3)|B(i2)=a,B(i4)=b,U=1,I , · · · , FB(i3)|B(i2)=a,B(i4)=b,U=N,I}

and

{FB(i5)|B(i4)=b,U=1,I , · · · , FB(i5)|B(i4)=b,U=N,I}.

Remark 3.4. For Assumption 3.3 to hold, for either FPA or SPA, it is necessary that the interval [b, a]

is contained in the intersection of the support of the marginal distribution of bids given different

values of U. For SPA, this amounts to requiring that [b, a] ⊂ ∩N
n=1(cn, dn), where (cn, dn) represents

the interior of the support of the marginal distribution of valuations given U = n (see 2.1 and

2.2). Hence 3.3 precludes settings in which the support of the marginal distribution of bids given

different values of the UH have intersection with empty interior. A similar remark applies to 3.2.

Remark 3.5. Assumption 3.2 allows for the instrument Z to be discrete. However, for condition 3.3

to hold, it is necessary that Z has at least N support points 8

8As can be seen from the proofs of our results below, Assumption 3.3 can be weakened to requiring that the CDFs

within the sets {FB(i1) |B(i2)=a,U=1,I , · · · , FB(i1) |B(i2)=a,U=N,I}, and {FB(i3) |B(i2)=a,U=1,I , · · · , FB(i3) |B(i2)=a,U=N,I} are linearly in-

dependent, and that the CDFs in the set {FZ|U=1, · · · , FZ|U=N} are not all equal (see Remark 3.13). In this case identifi-

cation is possible when Z has only two support points.
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I refer to the variable Z in Assumption 3.2 as an ”instrumental-like” variable, because condi-

tion 3.1 can be interpreted as an exclusion-restriction, as it allows for the variable Z to affect the

distribution of the observed bids only through the variable U, and condition 3.3 can be seen as a

relevance condition, as it requires−in some sense−that Z be correlated with U. Note, however,

that the variable U which plays the role of the endogenous variable in the analogy is not observed.

One good example of an instrument Z in our setting is a secret reserve price9. Indeed, suppose

that the secret reserve price is given by Z = h(U, η), for some function h, and where η repre-

sents the seller’s own private information which is conditionally (on UH) independent of bidders

valuations: that is η ⊥ (V1, · · · , VI)|U. Then 3.1 is clearly satisfied, and 3.3 can be expected to

hold for some choices of functions h and of variable η. It can easily be shown that 3.3 holds if

Z = h(U, η) = U + η and if we assume in addition that η ⊥ U. Such a model for the reserve

price is reasonable if the seller also observes U (in addition to some private signal η), and uses that

information to set the reserve price (see Roberts (2013) and Freyberger and Larsen (2020)). Another

example of an instrument suggested by Hu, McAdams, and Shum (2013) in the context of timber

auction, where the U represents the quality of timber for sale, is the average amount of rainfall

or the soil quality, which is arguably correlated with timber quality, but only affects bidders’ val-

uations through timber quality. Another example of an instrument in the setting of Example 2.1

above, is the average yearly amount of salt used to melt ice on the roads in the locality (zip code)

of provenance of the car, as the amount of snow used on the road is negatively correlated with the

condition of the car’s body and can reasonably be assumed to affect bidders’ valuations of the car

through the car’s body.

Note that unlike Roberts (2013) and Freyberger and Larsen (2020) who use an instrument to es-

tablish identification in a setting with incomplete bid data and UH (in the setting of Freyberger

and Larsen (2020) the number of bidders I is also unobserved by the econometrician), we put little

restrictions on how the instrument and UH are related. In Freyberger and Larsen (2020), since

they rely on classical deconvolution arguments for identification, the instrument is related to the

UH in an additively separable way: Z = U + η, with η independent of all other variables in the

model. The additive separability assumption greatly restricts the way in which the UH affect the

distribution of the instrument, as it is only allowed to shift its mean10. In 3.3, the UH is allowed to

shift the distribution of the instrument in a much more complex way. In Roberts (2013), however,

the identification argument relies on a control function approach, and the instrument Z (which is

the reserve price in his setting) is essentially modelled as some strictly monotonic function of U:

That is Z = h(U) for some unknown and strictly monotone h. Clearly, modelling the seller’s re-

9A secret (as opposed to a public) reserve price is one that is not observed by the bidders when they place their bids.
10Their identification argument is also valid for the multiplicative separable specification Z = Uη, where both U and

η are positive. Indeed an application of the logarithm function transforms this specification into an additive separable

one, and the identification results in that context apply. Note that the multiplicative separable specification only allows

the UH to shift the mean of the logarithm of the instrument.
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serve price as a deterministic function of U excludes settings where the seller also possesses some

additional information that she uses to set the reserve prices, which may lead to the distribution

of Z|U being non-degenerate.

Remark 3.6. The full rank conditions that appear in Assumption 3.3 and Assumption 3.2 are simi-

lar to the full rank conditions that are needed for identification in the mixture literature and in the

misclassification literature (see Elizabeth, Matias, and Rhodes (2009), Bonhomme, Jochmans, and

Robin (2014), Bonhomme, Jochmans, and Robin (2016) and Kasahara and Shimotsu (2009), Hu,

McAdams, and Shum (2013), Hu (2008), An, Hu, and Shum (2010)). These rank conditions require

that the UH induces sufficiently heterogeneous variations on the conditional distribution of ob-

served order statistics given U. As will be shown in the proof, the rank conditions are needed to

guarantee the invertibility of certain matrices. In the case of SPA, since bids are equal to valuations,

assumptions 3.3 and 3.2 are assumptions on the underlying distribution of valuations; a primitive

of the model. Hence these assumptions can be seen as ”low-level” conditions in the case of SPA.

In the case of FPA, however, these assumptions put restrictions on the distributions of observable

bids (not a primitive of the model), and 3.3 and 3.2 are interpretable in this case as ”high-level”

conditions. Intuitively, for conditions 3.2 and 3.3 to hold, the re-normalization to subintervals of

the conditional distribution of valuations has to sufficiently vary across different values of U.

Example 3.7. For both FP and SPA, Assumption 3.3 and condition 3.2 in Assumption 3.2 hold for

many familiar parametric distributions. It can be shown for instance that it holds if the condi-

tional distribution of valuations given the UH is log-normally distributed. That is V|U ∼ Z with

log(Z) ∼ N(U, 1) or log(Z) ∼ N(0, U), and with any pair of positive numbers 0 < b < a and any

five order statistics. The same conclusion also applies if the conditional distribution of valuation

given the UH is exponential: That is V|U ∼ exp(U).

Example 3.8. In the case of FPA and SPA, 3.3 and 3.2 fail to hold for instance when V|U = n is

distributed uniformly on the interval [0, n], for n = 1, · · · , N. In the case of SPA, this failure is due

to the fact that the conditional distribution of valuations conditional on valuations being less than

a (and on U = n), for any a ∈ (0, 1), is equal to the uniform distribution on [0, a] (independently of

n). Therefore, by Lemma 5.1 the elements of the set

{FB(i3)|B(i2)=a,U=1,I , · · · , FB(i3)|B(i2)=a,U=N,I}

appearing in condition 3.2 (for any a ∈ (0, 1)) are all equal, as well as those within the set

{FB(i5)|B(i4)=b,U=1,I , · · · , FB(i5)|B(i4)=b,U=N,I}

appearing in 3.3 (for any b ∈ (0, 1)), and linear independence fails to hold. Therefore, Assumptions

3.2 and 3.3 fail to hold for this example (see Remark 3.4). In the case of FPA, the bidding strategy

in auctions of type U = n is given by β(v) = (I/(I + 1))v for v ∈ [0, n], and the conditional
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distribution of bids conditional on bids being less than any a, for any a ∈ (0, I/(I + 1)), is given by

the uniform distribution on [0, a] (independently of n). Therefore, by Lemma 5.1, as above, linear

independence of the elements of the set

{FB(i3)|B(i2)=a,U=1,I , · · · , FB(i3)|B(i2)=a,U=N,I},

or

{FB(i5)|B(i4)=b,U=1,I , · · · , FB(i5)|B(i4)=b,U=N,I},

fails to hold for all values of a and b in the interior of the common intersection of the supports (see

Remark 3.4)) which is equal to (0, I/(I + 1)).

I show in Section 3.2 below that in the case of SPA, failure of 3.3 or 3.2−as in Example 3.8−is

in some sense ”pathological”, and both conditions hold generically. Loosely speaking, this means

that given all the restrictions that we put on the conditional (on UH) distribution of valuations, an

N−tuple of distributions (FV|U=1, · · · , FV|U=N) taken at random from the appropriate space (which

imposes all the other restrictions of the model) satisfies the desired conditions with ”probability”

one. The appropriate definitions and the exact statement of the result will be provided in Section

3.2. I now state the main identification results of this section.

Theorem 3.9. Suppose that the econometrician observes an i.i.d sample {B(i1)
t , B(i2)

t , B(i3)
t , Zt, It}T

t=1 and

that assumption 3.2 holds. Then the conditional distributions of players’ bids given different realizations of

the unobserved heterogeneity U and of the number of bidders I, FB|U,I , as well as the marginal distribution

of the unobserved heterogeneity are identified.

Theorem 3.10. Suppose that the econometrician observes an i.i.d sample {B(i1)
t , · · · , B(i5)

t , It}T
t=1 and that

assumption 3.3 holds. Then the conditional distributions of players’ bids given different realizations of the

unobserved heterogeneity U and of the number of bidders I, FB|U,I , as well as the marginal distribution of

the unobserved heterogeneity are identified.

Remark 3.11. Theorem 3.10 is the first positive identification result in a model with incomplete bid

data and unobserved heterogeneity that does not rely on the availability of some additional aux-

iliary data such as an instrument (contrast to Roberts (2013) and Freyberger and Larsen (2020)).

Also, the identification argument does not exploit variations in the number of bidders I, and the

argument can be made conditional on a fixed value of I (contrast to Quint (2015)). Hence Theorem

3.10, in parts, answers an identification question raised in section 3.2 of Athey and Haile (2002),

concerning the possibility of identification in a model of UH from an incomplete set of bids. The

main new technical tool used to establish these identification results is the Markov property of

order statistics (Lemma 3.1). The use of five order statistics in 3.10 to obtain identification mirrors

the result of Hu and Shum (2012) where five periods of observation are needed to establish iden-

tification of the law of motion of a Markov process with some unobserved state variables, and the

identification arguments are somewhat similar.
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Remark 3.12. Note that by the exogenous entry assumption (2.3) and the fact that bids are equal

to valuations in SPA, the identified conditional distributions of bids FB|U,I are independent of the

number I of bidders and are equal to the conditional distributions of bidders’ valuations given U:

FV|U . In the context of FPA however, although the exogenous entry Assumption implies that the

conditional distribution of valuations given U and I is independent of I, the identified conditional

distributions FB|U,I will be dependent on I, as the bidding strategies in FPA are functions of the

level of competition I. In fact, FB|U,I will be increasing in I in the first order stochastic dominance

sense, since players shade less when the competition is greater in FPA. This shows that both in

FPA and SPA the exogenous entry assumption has some testable implications when the variable I

takes at least 2 values with positive probability.

Remark 3.13. A closer look at the proof of Theorem 3.10 reveals that Assumption 3.3 is stronger than

needed for identification and can be relaxed. Indeed, the conclusion of 3.10 still holds if condition

3.3 is replaced with the weaker assumption that only requires that the CDFs within any two of the

three sets in 3.3 are linearly independent and those within the third set are distinct. However, the

identification argument under this weaker form of Assumption 3.3 is more involved. Similarly, the

result of Theorem 3.9 still holds if we only require that the CDFs within any two of the three sets

in 3.2 and 3.3 are linearly independent, and that those within the third set are distinct (see proof of

3.20). In section 3.1, I introduce an easily interpretable condition on the conditional distributions of

valuations (given U) in the context of FPA, and show that it implies the weaker form of Assumption

3.2 alluded to above, thus providing a low-level condition that is sufficient for identification in the

setting of Theorem 3.9.

Heuristic. I provide now the heuristics for the main steps involved in the proof of 3.10. The argu-

ment used to establish 3.9 is similar. The following argument is done conditional on the random

variable I (the number of bidders) taking a fixed value I0 in its support, and, for notational sim-

plicity, I will omit I from the conditioning set. The proof proceeds in three main steps. In the first

step, I use multiple applications of Lemma 3.1 and the law of iterated expectations, to express the

joint distribution of any five order statistics of the observed bids (in auctions with I0 bidders11)−
which I assume without loss of generality to be the first five order statistics − as follows

F(B(1),B(3),B(5)|B(2),B(4))(b1, b3, b5|B(2) = a, B(4) = b) (3.4)

=
N

∑
n=1

P(U = n|B(2) = a, B(4) = b)F1n(b1)F3n(b3)F5n(b5) (3.5)

where F1n(b1) := FB(1)|B(2)(b1|B(2) = a, U = n), F3n(b3) := FB(3)|B(2),B(4)(b3|B(2) = a, B(4) = b, U = n)

and F5n(b5) := FB(5)|B(4)(b5|B(4) = b, U = n). Equation 3.4 is now in a form that is similar to 2.5,

and note that by Remark 3.4 the probabilities {P(U = n|B(2) = a, B(4) = b)}N
n=1 are all non-zero.

11Since we consider auctions with incomplete bid data, I0 is necessarily greater than or equal to 6.
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In the second step of the proof, I apply the arguments from the mixture literature to identify12 all

the terms on the RHS of 3.4. Assumption 3.3 can be seen as the natural analogue of the linear

independence condition in Theorem 8 of Elizabeth, Matias, and Rhodes (2009). In the third step of

the proof, I show how the objects of interest− the conditional distribution of bids given different

values of the UH, {FB|U(·|U = n)}N
n=1, and the marginal distribution of the UH−can be identified

from the terms on the RHS of 3.4. In this last step, I repeatedly use Lemma 5.1 and Lemma 5.2 to

identify different “portions” of the marginal distribution of bids given the UH from the conditional

distribution of order statistic of bids that appear on the RHS of 3.4. The application of Lemma 5.1

implies, for instance, that F5n is equal to the distribution of the largest order statistic out of I0 − 4

independent draws from the distribution of bids conditional on U = n and on bids being less than

b. It then follows from Lemma 5.2 that φ−1
1:I0−1 ◦ F5n identifies the distribution of bids conditional

on U = n and on bids being less than b:

FB|U(·|U = n)
FB|U(b|U = n)

.

Once the conditional distributions of bids given different values of the UH are identified, re-

call that in the case of SPA, the identification of FB|U implies the identification of the conditional

distribution of valuations FV|U (since bids are equal to valuations), and for FPA, the conditional

distributions of valuation given the UH, FV|U , are identified from FB|U through 2.4. This concludes

the identification argument.

3.1 Low level condition for FPA

In the setting of FPA, I provide in this section a condition on the distribution of bidders’ val-

uations that is sufficient for identification when the data available to the econometrician is as in

Theorem 3.9. I replace the identifying assumption 3.2 − a condition on the observed bids (a high-

level condition for FPA) − used to establish Theorem 3.9 by an assumption on the conditional

distribution of bidders’ valuations given U − a condition on a primitive of the model (a low-level

condition). Moreover, I show that the new low level condition is sufficient for identification of

the parameters in Theorem 3.9. I begin by recalling the definition of the reverse hazard rate order

(see Shaked M. (2007)), which is a stochastic order that I use in the statement of Assumption 3.16

below13.
12Recall that identification in this context is defined up to label swapping.
13Reverse hazard rate dominance is equivalent to the notion of conditional stochastic dominance in Maskin and Riley

(2000) (see 1.B.43 in Shaked M. (2007)).
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Definition 3.14 (Reverse hazard rate dominance). Let F be a continuously differentiable CDF with

density f . The reverse hazard rate (RHR) function of the distribution F is defined by

rF(t) =
f (t)
F(t)

for all values of t strictly greater than the lower bound of the support of F, and is equal to zero oth-

erwise. Given two random variables X ∼ F and Y ∼ G, we say that X dominates Y (alternatively

F dominates G) in the RHR order, and write X �rh Y (alternatively F �rh G), iff

rF(t) ≥ rG(t) (3.6)

for all t ∈ R. Moreover, we say that X strictly dominates Y in the RHR order and write X �rh Y

(or F �rh G) if inequality 3.6 holds for all t and is strict for some values of t. Finally, we say that X

strongly dominates Y in the RHR order, if inequality 3.6 holds for all t, and is strict for all t strictly

greater than the lower bound of the support of G and strictly less than the upper bound of the

support of F.

Remark 3.15. Note that if F �rh G, then it is necessarily true that the lower bound (resp. upper

bound) of the support of G is less than or equal to the lower bound (resp. upper bound) of the

support of F. Also, it is easy to show that (see 1.B.43 in Shaked M. (2007)) X dominates Y in the

reverse hazard rate order if and only if [X|X ≤ t] first-order stochastically dominate [Y|Y ≤ t] for

all t strictly greater than the maximum between the lower bound of the support of X and the lower

bound of the support of Y 14. Finally, reverse hazard rate order is implied by the likelihood ratio

order and implies first order stochastic dominance 15 (see Theorem 1.B.32 and Theorem 1.C.1 in

Shaked M. (2007), and Lemma 3.1 in Maskin and Riley (2000)).

I now state the main identifying assumption for Theorem 3.20 below.

Assumption 3.16. The instrument Z satisfies conditions 3.1 and 3.3. The conditional distributions

of bidders’ valuations, denoted by Fn (Fn := FV|U=n), are supported on the finite intervals [cn, dn]

with a common lower bound: cn = c independently of n. The distributions Fn are increasing in n,

for n = 1, · · · , N, in the RHR order: That is, whenever n > n′, we have

Fn �rh Fn′ , (3.7)

and we assume in addition that the inequality between the RHR functions are strict for values of t

near the lower bound of the support, i.e, there exists δ > 0 such that

rFn(t) > rFn′ (t) (3.8)

for all t ∈ (c, δ), and for all n > n′.
14In an asymmetric auction setting with two types of bidders, Maskin and Riley (2000) refer to a notion similar to the

latter property as conditional stochastic dominance, and Athey, Levin, and Seira (2011) refer to 3.6 as the hazard rate order.
15We say that F dominates G in the likelihood ratio order, and write F �lr G, if the ratio of their densities f (t)

g(t) is

non-decreasing over the union of their supports.
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Remark 3.17. By Remark 3.15 and Footnote 15, 3.7 and 3.8 hold for instance if the ratio of densities

fn(t)/ fn′(t) is non-decreasing on (c, dn) and strictly increasing on (c, δ) whenever 1 ≤ n′ < n ≤ N.

Also, it is easy to show that 3.7 and 3.8 imply that Fn(t)/Fn′(t) is non-decreasing in t (for t > c),

and is strictly increasing on the interval (0, δ) (see p.37 in Shaked M. (2007)), where δ is as in

Assumption 3.16.

The condition on the distribution of bidders valuations in Assumption 3.16 is inspired by

Proposition 3 in Hu, McAdams, and Shum (2013), where monotonicity of the conditional dis-

tribution of valuations in the first order stochastic dominance (FOSD) sense is used to establish

a full rank condition on the conditional distributions of observed bids in FPA. In the setting of

this paper, however, monotonicity of FV|U in U with respect to FOSD does not imply condition 3.2

on the conditional distribution of the observed order statistics of the bids, as shown by Example

3.8. Therefore, Monotonicity with respect to a stronger stochastic order is necessary to guarantee

the full rank conditions 3.2 on the distribution of the observed bids. Note that when the condi-

tional distributions of valuations are as in Example 3.8, condition 3.7 is satisfied, whereas 3.8 is

not. Indeed, in the setting of Example 3.8, the RHR function of Fn is given by

rn(t) = 1/t

for t ∈ (0, n], and rn(t) = 0 otherwise. I show in Proposition 3.18 below, that condition 3.7 coupled

with 3.8 imply that bidders in auctions corresponding to larger values of the unobserved hetero-

geneity consistently bid more aggressively (closer to their valuation) than those in auctions with

smaller values of U, and using the first order condition of bidders’ maximization problem, I show

that this implies that the distribution of bids in auctions that correspond to larger values of the un-

observed heterogeneity strongly dominates in the RHR order the distribution of bids corresponding

to lower values of the UH.

Proposition 3.18. Suppose that Assumption 3.16 is satisfied, and let Gn,I denote the marginal distribution

of players’ bids in auctions of type U = n with I participants (Gn,I := FB|U=n,I), where I ≥ 2. Then Gn,I

strongly dominates Gn′,I in the reverse hazard rate order whenever 1 ≤ n′ < n ≤ N, and the upper bound

of the support of Gn,I , denoted b̃n,I , is strictly increasing in n.

Proof. Fix I ≥ 2 auction participants, and consider the different first-price auctions that correspond

to different values of the variable U. When U = n, the (unique) symmetric, differentiable and

strictly increasing Bayesian Nash equilibrium strategy of the corresponding FPA, denoted by βn,I ,

is given by (see Riley and Samuelson (1981) or Guerre, Perrigne, and Vuong (2000))

βn,I(v) = v−
∫ v

c

(
Fn(u)
Fn(v)

)I−1

du (3.9)

for v ∈ [c, dn], where Fn, c and dn are as in Assumption 3.16. Let 1 ≤ n′ < n ≤ N. By Remark

3.17, for all v > c, the distribution of bidders’ valuations conditional on valuations being less than
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v in auctions of type U = n, strictly first order stochastically dominates the distribution of bidders’

valuations conditional on valuations being less than v in auctions of type U = n′: That is

Fn(u)
Fn(v)

≤ Fn′(u)
Fn′(v)

(3.10)

for any c ≤ u ≤ v, and note that the inequality is strict whenever c < u < min{δ, v}. Combining

3.9 and 3.10 yields

βn,I(v) > βn′,I(v) (3.11)

for all v > c. The latter is easily shown to imply

b̃n,I > b̃n′,I (3.12)

whenever 1 ≤ n′ < n ≤ N. Let gn,I denote the density of the marginal distribution of players’ bids

in auctions of type U = n. Making the change of variable v = β−1
n,I(b) into the first-order condition

of bidders’ optimization problem (see Proposition 6 in Laffont and Vuong (1996) for details) we

get

rn,I(b) =
1

(I − 1)(β−1
n,I(b)− b)

(3.13)

where rn,I(b) = gn,I(b)/Gn,I(b) (for b > c) denotes the RHR function of the distribution Gn,I .

Combining 3.11 and 3.13 yields

rn,I(b) > rn′,I(b) (3.14)

for all b ∈ (c, b̃n′,I ], and n > n′ . Moreover, since rn′,I(b) = 0 for all b ∈ (b̃n′,I , b̃n,I ], we conclude that

inequality 3.14 holds for all b ∈ (c, b̃n,I) and Gn,I strongly dominates Gn′,I in the RHR order.

I now establish a corollary of the preceding proposition that shows that a weaker version of

condition 3.2 is satisfied when Assumption 3.16 holds. Note that the distributions in the set 3.16

below are only shown to be distinct (contrast to the condition on the same set of distributions in

3.2).

Corollary 3.19. Fix 1 ≤ i1 < i2 < i3 ≤ I, and suppose that Assumption 3.16 is satisfied. Then for

any a ∈ (c, b̃1,I) − where b̃1,I denotes the upper bound of the support of bids when there are I auction

participants and U = 1 (see Proposition 3.18) − the elements of the set

{FB(i1)|B(i2)=a,U=1,I , · · · , FB(i1)|B(i2)=a,U=N,I} (3.15)

are linearly independent, and the elements of the set

{FB(i3)|B(i2)=a,U=1,I , · · · , FB(i3)|B(i2)=a,U=N,I} (3.16)

are distinct.
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Proof. I first establish the claim concerning 3.15. Note that since densities of valuations are as-

sumed to be strictly positive on the interior of their support (recall 2.1) and that bidding strategies

are continuously differentiable and strictly increasing on the interior of the support of bidders’

valuations, the support of a player’s bid in an auction of type U = n with I participants is given

by [c, b̃n,I ]. Therefore, by Proposition 3.18, for any a ∈ (c, b̃1,I), the support of a player’s bid in

an auction of type U = n with I participants and conditional on the bid being larger than a,

[B|B > a, U = n, I], is equal to [a, b̃n,I ]. By Lemma 5.1, the distribution of [B(i1)|B(i2) = a, U = n, I]

is the same as the distribution of the ith
1 order statistic out of i2 − 1 draws from the distribution of

[B|B > a, U = n, I]. The latter observation combined with Lemma 5.2 imply that the support of

[B(i1)|B(i2) = a, U = n, I] is given by the interval [a, b̃n,I ]. Since b̃n,I is strictly increasing by Proposi-

tion 3.18, it easily follows that the elements of {FB(i1)|B(i2)=a,U=1,I , · · · , FB(i1)|B(i2)=a,U=N,I} are linearly

independent.

I now establish the claim concerning 3.16. By Proposition 3.18 the marginal distribution of

bids in auctions of type U = n with I participants, Gn,I , is increasing in n in the strong RHR or-

der. Therefore, for any a ∈ (c, b̃1,I), the distribution of a player’s bid in an auction of type U = n

with I participants and conditional on the bid being less than or equal to a, [B|B ≤ a, U = n, I],

is strictly increasing in n in the FOSD sense 16. Indeed, Gn,I increasing in n in the strong RHR or-

der implies that Gn,I(t)/Gn′,I(t) is strictly increasing in t on (c, b̄n,I), whenever 1 ≤ n′ < n ≤ N.

By Lemma 5.1 the distribution of [B(i3)|B(i2) = a, U = 1, I] is the same as the distribution of the

(i3 − i2)th order statistic out of I − i2 draws from the distribution of [B|B ≤ a, U = n, I]. Combin-

ing the latter observation with Lemma 5.2, and the fact that all the functions φi:I in 5.2 are strictly

increasing, we conclude that [B(i3)|B(i2) = a, U = n, I] strictly first order stochastically dominate

[B(i3)|B(i2) = a, U = n′, I] whenever 1 ≤ n′ < n ≤ N, and the elements of the set 3.16 are dis-

tinct.

I now state the main theorem of this section, the proof is given in the Appendix.

Theorem 3.20. Suppose that the econometrician observes an i.i.d sample {B(i1)
t , B(i2)

t , B(i3)
t , Zt, It}T

t=1 from

FPA and that assumption 3.16 holds. Then the conditional distributions of players’ bids given different

realizations of the unobserved heterogeneity U and of the number of bidders I, FB|U,I , as well as the marginal

distribution of the unobserved heterogeneity are identified.

Remark 3.21. Note that Assumption 3.16 puts a natural order on the components of the mixture and

makes it possible to unambiguously identify each mixture component. Indeed, Proposition 3.18

implies that the mean of the distributions FB|U,I is strictly increasing in U17. Hence the identifica-

tion result in Theorem 3.20 holds in the “classical” sense (not up to a permutation of the mixture

16 I say that a distribution F strictly dominates a distribution G in the FOSD sense if F(t) ≤ G(t) for all t ∈ R, with

the latter inequality being strict for some values of t.
17Recall that strong RHR dominance implies strict first-order stochastic dominance.
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components as in Theorem 3.9 and Theorem 3.10).

3.2 Genericity of identification for SPA

In this section, in the setting of SPA, I show that given all the (other) maintained assumptions

on our model, the set of underlying distribution of valuations for which the distribution of ob-

served bids satisfy condition 3.2 and 3.3 is ”large” or ”generic”. This, in some sense, provides

some justification for stating that Assumptions 3.2 and 3.3 are mild in the context of SPA.

For finite dimensional spaces, a property is said to be generic if the set of parameter values for

which it fails to hold is a set of Lebesgue measure zero (a Lebesgue null set). This definition, how-

ever, does not readily extend to infinite dimensional Banach spaces, as there is no natural analogue

of the Lebesgue measure on such spaces18 (see Hunt, Sauer, and Yorke (1992)). There are two main

notions of genericity in infinite dimensional spaces: the topological notion and the measure theo-

retic notion (see Anderson and Zame (2001)). The results in this paper will be stated in terms of the

measure theoretic notion of genericity, as it is the natural extension (to infinite dimensional spaces)

of the finite dimensional notion of genericity alluded to above. The starting point for this notion of

genericity is based on the observation that in Rd, a Borel set A has Lebesgue measure zero if and

only if there exists a compactly supported probability measure, µ, such that µ(A + x) = 0 for all

x ∈ Rd (see Hunt, Sauer, and Yorke (1992)). The latter equivalent characterization of a Lebesgue

null set has a natural extension to infinite dimensional spaces: We say that a Borel subset A of

an infinite dimensional Banach space X is shy if there exists a compactly supported regular Borel

probability measure µ on X such that µ(A + x) = 0 for all x ∈X (see Anderson and Zame (2001)

and Hunt, Sauer, and Yorke (1992))19. Hence, shy sets are the infinite dimensional analogue of

Lebesgue null sets, and we say that a set A is prevalent if its complement is shy20.

As argued by Anderson and Zame (2001), however, the latter definition is not satisfactory for

many economic applications, as the parameter space under consideration is often a much smaller

subset of the ambient vector space21. Anderson and Zame (2001) provide an extension of the con-

cept of shyness and prevalence to convex subsets of vector spaces. The definition (which I simplify

to the setting of this paper) is as follows: Let X be a Banach space, and let C ⊂ X be a closed con-

18The important property of the Lebesgue measure being that it is a non-zero translation invariant Borel measure

which assigns finite mass to open balls.
19The definitions and results in Hunt, Sauer, and Yorke (1992) and Anderson and Zame (2001) are stated in terms of

completely metrizable topological vector spaces. This level of generality, however, will not be needed for our results.
20See Hunt, Sauer, and Yorke (1992) for an extension of the concepts of shyness and prevalence to sets that are not

necessarily Borel measurable.
21Consider for instance the question of how generic the property of being invertible is for symmetric 2× 2 covariance

matrices. The correct parameter space with respect to which genericity of invertibility should be established in this

example is the set of symmetric 2× 2 matrices, a set that has Lebesgue measure zero in the space of all 2× 2 matrices (it

is a set of dimension 3 in a space of dimension 4).
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vex subset of X . Let c ∈ C. A set E ⊂ C which is Borel measurable is said to be shy in C at c if

for each r > 0 and δ ∈ (0, 1) there is a Borel regular probability measure with compact support

such that supp(µ) ⊂ [δ(C − c) + c] ∩ B(c, r),22 and µ(E + x) = 0 for all x ∈ X . By definition, E is

shy in C if it is shy at c for all c ∈ C. A subset F ⊂ C is prevalent if its complement is shy in C. 23

Anderson and Zame (2001) provide a series of results that show that the (relative) notion of shy-

ness given above satisfies all the properties that we should expect of a measure theoretic definition

of relative smallness. Papers in the economic literature that study this notion (or the topological

notion) of genericity (in infinite dimensional spaces) include among others Heifetz and Neeman

(2006), Chen and Xiong (2013)−who study genericity issues related to auction theory/mechanism

design− Andrews (2017) (see also Connault (2016))− for genericity issues related to identification.

Let X be the vector space of all N− tuple of continuous function on [0, 1] equipped with the

norm ‖F‖ = max1≤i≤N maxx∈[0,1] |Fi(x)|, where F = (F1, · · · , FN) is an element of X . Let C be the

subset of X that consists of all N−tuples of continuous CDFs. It can be easily shown that X is a

Banach space, and that C is a closed convex subset of X . Given a CDF φ and an element F ∈ C,

let φ ◦ F ∈ C be defined by φ ◦ F = (φ(F1), · · · , φ(FN)). Given a closed subinterval S = [b, a] (with

b < a) of [0, 1] and an element F = (F1, · · · , FN) ∈ C, let the renormalization of F on S, denoted FS, be

the element of X such that its ith element is equal to

min{max{ Fi(·)− Fi(b)
Fi(a)− Fi(b)

, 0}, 1}

if Fi(a)− Fi(b) > 0 and is equal to the zero function otherwise. That is, the renormalization of F on

S is the N−tuple of functions which replaces each element of F by the corresponding conditional

distribution on [b, a] when the latter exists or by the zeroth function otherwise. Note that for F ∈ C,

FS 6∈ C if and only if one of the elements of F does not vary on S, in which case the corresponding

element in FS is equal to zero. Also, when S = [0, 1], FS = F. let φi:n be the distribution of the ith

order statistic out of n independent draws from a uniform distribution on [0, 1] (see 5.2), and let A
be the collection of all such CDFs for all i and n:

A := {φi:n|for some i and n ∈N such that 1 ≤ i ≤ n}.

Given an element F ∈ C we define the rank of F, denoted rank(F), to be the dimension of the vector

space spanned by the elements of F. Let G* ∈ C be such that rank(φ ◦G*) = N for all φ ∈ A (I

show in the appendix that such an element G* exists). When the set S is a singleton, define the

renormalization of F on S, for F ∈ C, by: FS = G*. I now state the main result of this section.

22B(c,r) denote the ball centered at c of radius r, and C − c := {x− c|x ∈ C}.
23When the ambient space X is finite dimensional, a subset E of a closed convex set C is shy with respect to the

above definition if and only if it has measure zero with respect to the Lebesgue measure on the smallest hyperplane that

contains C (see Anderson and Zame (2001))
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Proposition 3.22. For all 0 ≤ b ≤ a ≤ 1, the subset Ea,b of C defined by

Ea,b = {F ∈ C|min{rank(φ ◦ F[0,b]), rank(φ ◦ F[b,a]), rank(φ ◦ F[a,1])} < N, for some φ ∈ A}

is shy in C.

Corollary 3.23. For SPA, if we assume that the conditional distributions of bidders’ valuations given dif-

ferent values of the UH have support contained on some compact set, say [0, 1] for instance, then the set of

all such N-tuples of distributions that satisfy condition 3.2 (or Assumption 3.3) is prevalent in C.

Interpretation Although the genericity results established in this section give some justification

in stating that assumptions 3.2 and 3.3 are mild, one should be careful with their interpretation.

The genericity claim is justified if any element of C is a plausible candidate for the set of conditional

distributions of valuations (given different values of U) in our model. In that case, assuming that

the identifying assumptions 3.2 and 3.3 hold will ”almost always” be correct. However, for a

specific application, it might be the case that more structure is imposed on the model. For instance,

if the unobserved heterogeneity U represents some measure of quality of the auctioned object, it

might be natural to assume that distributions FV|U that correspond to higher values of U first order

stochastically dominate those that correspond to lower values of U (see Hu, McAdams, and Shum

(2013)). In that case, the correct set C ′ with respect to which genericity should be establish is smaller

than C; Indeed, C ′ consists of the elements of C that are totally ordered in the first order stochastic

sense. Since the results of this section only deal with the genericity of the statement in C, they are

not applicable in the latter case, and it is possible for the set of distributions that satisfy 3.2 and 3.3

to now be non-generic relative to C ′.

Remark 3.24. By considering the setting where a = 1, b = 0, and by only considering the element

φ1:1(x) = x of A, Proposition 3.22 shows that the set of linearly independent N-tuples of distri-

butions is shy in C. This is precisely the condition required by Theorem 8 of Elizabeth, Matias,

and Rhodes (2009) to establish identification of mixtures of the type 2.5; it is shown In Eliza-

beth, Matias, and Rhodes (2009) that the mixture model 2.5 is identified if one observes at least

three continuous covariates, and the set of distributions of covariate j across different values of Θ,

{P(Xj ≤ xj|Θ = n)}N
n=1, is linearly independent (for at least three values of j). Proposition 3.22

strengthens the conclusion of Theorem 8 by showing that this linear independence assumption

holds generically, and thus provides a counterpart to Theorem 4 in Elizabeth, Matias, and Rhodes

(2009) which shows (under some mild conditions) that the mixture model 2.5 is generically iden-

tified if the observed covariates are discrete. I state the foregoing observation in the following

corollary.

Corollary 3.25. The mixture model 2.5 is generically identified whenever p ≥ 3 and the covariates {Xi}
p
i=1

are continuously distributed.
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3.3 Identification for SPA when the number of bidders is unobserved

In this section, in the context of SPA, I show how the identification result in Theorem 3.9 can be

extended to a setting where the number of potential bidders I is unobserved. As in Theorem 3.9,

I will assume that the econometrician observes at least three order statistics of the bids {B(ip)}3
p=1

(1 ≤ i1 < i2 < i3 < I) and an instrument Z. However, I will now assume that the level of

competition I is unobserved. For instance, when i1 = 1, i2 = 2 and i3 = 3, this will mean that

the econometrician observes the top three bids from each auction in the sample (with at least three

bidders), but does not know how many bidders participated in each auction− all that she can infer

is that there are at least three bidders in each auction in the sample. The latter setting is in particular

relevant to online auctions (see Song (2004)). I will assume that I has finite support supp(I) = I .

Assumption 3.26 (For three order statistics of the bids plus an instrument). The instrument Z

satisfies conditions 3.1 and 3.3. For 1 ≤ i1 < i2 < i3, and for some a ∈ R+, the conditional

distribution functions of the observed order statistics of the bids (given U) satisfy the following

conditions:

the distributions within the set

{FB(i1)|B(i2)=a,U=1, · · · , FB(i1)|B(i2)=a,U=N} (3.17)

are linearly independent, and the distributions within the set

{FB(i3)|B(i2)=a,U=1, · · · , FB(i3)|B(i2)=a,U=N} (3.18)

are distinct.

Remark 3.27. Note that the distributions appearing in 3.17 and 3.18 do not involve conditioning on

the unobserved I (compare to 3.2). However, Lemma 5.1 implies that the distributions in 3.17 are

independent of I. We have for instance that

FB(i1)|B(i2)=a,U=n,I = φi1:i2−1 ◦ [FB|U=n][a,+∞] (3.19)

where φi1:i2−1 is as in Lemma 5.2 and [FB|U=1][a,+∞] denotes the distribution of FB|U=1 truncated at

the left at a. Therefore the first set of distribution in 3.2 and the distributions in 3.17 are identical.

Note however that the second set of distributions in 3.2 and the set of distributions in 3.18 are

different. Indeed, by the law of iterated expectation and the exogenous entry assumption (2.3), we

have

FB(i3)|B(i2)=a,U=1 = ∑
j∈I and j≥i3

P(I = j|I ≥ i3)FB(i3)|B(i2)=a,U=1,I=j

and Lemma 5.1 and Lemma 5.2 yield

FB(i3)|B(i2)=a,U=1 = ∑
j∈I and j≥i3

P(I = j|I ≥ i3)φi3−i2:j−i2 ◦ [FB|U=1][0,a] (3.20)
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where [FB|U=1][0,a] denotes the distribution [FB|U=1][0,a] truncated at the right at a. Therefore, the

elements in 3.18 are mixtures of the corresponding elements in the second set of condition 3.2

(over different values of I), and condition 3.18 only requires that these mixtures are distinct for

different values of the UH (see Remark 3.13).

Remark 3.28. Using an argument similar to the one used to establish Corollary 3.19, it is easy to

show that assumption 3.26 is satisfied, for instance, for any three order statistics of the bids if: the

intersection of the supports of the conditional distributions of valuations given different values of

U has non-empty interior, FV|U=n strongly dominate in the RHR order FV|U=n′ whenever 1 ≤ n′ <

n ≤ N, and the upper bound of the support of FV|U , dn, is strictly increasing in U.

I now state the main result of this section. Its proof, which I provide in the appendix, involves

three main steps: In the first step (similarly to the first step of the proof of Theorem 3.20) I show

how Assumption 3.26 can be used to identify the conditional distribution of the instrument Z

given U for all values of U, i.e, {FZ|U=n}N
n=1. In the second step, I show how the distributions

{FZ|U=n}N
n=1 can be used to identify the joint distributions of the observed order statistics of the

bids conditional on different values of the unobserved heterogeneity U, i.e, {FB(i1),B(i2),B(i3)|U=n}
N
n=1),

and the marginal distribution of the unobserved heterogeneity. In the final step, I use the observa-

tion of Song (2004) to identify the conditional distributions of bids, FB|U , from the distribution of

any pair of observed order statistics 24.

Theorem 3.29. Suppose that the econometrician observes an i.i.d sample {B(i1)
t , B(i2)

t , B(i3)
t , Zt}T

t=1 from

SPA and that assumption 3.26 holds. Then the conditional distributions of players’ valuations given different

realizations of the unobserved heterogeneity U, FV|U , as well as the marginal distribution of the unobserved

heterogeneity are identified.

Remark 3.30. A simple modification of the proof of Proposition 3.22 shows that assumption 3.26

holds generically.

Remark 3.31. The identification argument of Theorem 3.29 does not extend to FPA. In particular,

the argument relies on the observation that under exogenous entry (Assumption 2.3), the underly-

ing marginal distribution of the players’ bids (given a value of UH) does not depend on I (as bids

are equal to values in SPA), and by Lemma 5.1 the conditional distribution of any order statistics

of the bids, say B(1), given a lower order statistic, say B(2), and UH is independent of I (see equa-

tion 3.19). However, in the context of FPA, since the bidders’ (common) strategy depends on the

level of competition (see equation 3.9), the marginal distribution of the players’ bids varies with

I, even under the exogenous entry assumption. One possible approach to take would be to make

the variable I part of the UH; however such an approach would require that one distinguishes

24 The conditional distribution of B(i1) given B(i2) = a and U is independent of I and given by equation 3.19. The

distribution [FB|U ][a,+∞] can then be identified by inverting relation 3.19, and taking the limit of such distributions as a

approaches the lower bound of the support of B(i2) identifies FB|U
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variations in the distributions of the mixture components that arise from changing I while hold-

ing other components of the UH fixed, in order to identify I and the underlying distribution of

valuations through 2.4. Extending the identification result in 3.29 to FPA, would be valuable for

empirical applications where the number of potential bidders also constitutes part of the UH (see

An, Hu, and Shum (2010)). I leave the investigation of this question to future work.

4 Conclusion

This paper studies the identification of auction models with incomplete bid data in a setting

where bidders’ valuations are independent conditional on some auction level UH with finite sup-

port. By exploiting the Markov property of order statistics, this paper shows that the joint distribu-

tion of bidders’ valuations and UH is point identified in both first and second price auction models

from a strict subset of the order statistics of the bids, without relying on the availability of auxiliary

auction data; all that is required is that the econometrician observes at least five order statistics of

the bids in the auctions in her data set. When the econometrician has access to an instrument, the

paper shows that observing at least three order statistics of the bids suffices for point identification,

and identification still holds even if the econometrician does not observe the number of potential

bidders, a setting that is relevant for online auctions. All the results are established under mild

low-level conditions on the distributions of valuations and without imposing any functional form

restriction on the relation between the UH and the valuations.

5 Appendix

5.1 Notation

I use ⊗ and ⊗K to denote respectively the tensor product and Kronecker product. Given a

square matrix B, diag(B) will denote the diagonal matrix that coincides with B on its diagonal,

and o f f (B) will denote the matrix that coincides with B on its off-diagonal and its zero on the

diagonal. For a general matrix B, I will use B+ to denotes its Moore-Penrose pseudo inverse and

‖B‖F to denote its Frobenius norm. For a positive integer d, Id will denote the d × d identity

matrix, and I will use ed
k to denote the kth unit coordinate vector in Rd. Given a matrix B ∈ Rp×q,

let vec(B) ∈ Rpq denote the vector with its first block of p elements corresponding to the first

column of B, its second block of p elements corresponding to the second column of B, and so on.

5.2 Omitted proofs of section 3

Before proceeding to the identification proofs, I first state two lemmas that will be used repeat-

edly throughout the identification argument. The first lemma describes how the distribution of
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one order statistic conditional on another is related to the parent distribution. For its proof, see

Theorem 2.5 in Aron and Navada (2003).

Lemma 5.1. Let W1, · · · , WI be independent observations from a continuous CDF F. Fix 1 ≤ i < j ≤ I.

Then,

• the conditional distribution of W(i) given W(j) = w is the same as the unconditional distribution of

the ith order statistic in a sample of size j− 1 from a new distribution, namely the original F truncated

at the left at w,

• and the conditional distribution of W(j) given W(i) = w is the same as the unconditional distribution

of the (j-i)th order statistic in a sample of size I − i from a new distribution, namely the original F

truncated at the right at w.

The second lemma describes how the distribution of an order statistic is related to that of the

parent distribution. Its proof can be found in Aron and Navada (2003) or Arnold (1992) (see also

Athey and Haile (2002)).

Lemma 5.2. The CDF of the ith order statistic from a sample of size I from a continuous cdf F, which I

denote by Fi:I , is a strictly monotonic function of the F. Indeed, Fi:I(t) = φi:I(F(t)) where φi:I is the CDF

of the ith order statistic from I i.i.d draws from a uniform (on [0, 1]) distribution, given explicitly by

φi:n(t) =
n!

(n− i)!(i− 1)!

∫ t

0
sn−i(1− s)i−1ds (5.1)

for t ∈ [0, 1] .

5.2.1 Proof of Theorem 3.10

Proof. The proof of Theorems 3.10 and 3.9 is similar in parts to that of Theorem 1 and 2 in Bon-

homme, Jochmans, and Robin (2016) (see also Bonhomme, Jochmans, and Robin (2014), Hu, McAdams,

and Shum (2013) and Kasahara and Shimotsu (2014)), the main complication in the present setting

being due to the lack of conditional independence of the observed bids, which I overcome by ex-

ploiting the Markov property of order statistics. The following argument is done conditional on

{It = I} where I is a value in the support of It.

I begin by showing that the cardinality N of the support of the unobserved heterogeneity U

is identified. Fix 0 < b < a and let ∆1, ∆2 and ∆3 be arbitrary finite partitions of [0, b], [b, a] and

[a,+∞] respectively, where ∆1 = {δ1
1 , · · · , δ1

|∆1|}, ∆2 = {δ2
1 , · · · , δ2

|∆2|} and ∆3 = {δ3
1 , · · · , δ3

|∆3|}.
Here |A| denotes the cardinality of the set A. By 2.1 and the Markov property of order statistics,

for i ∈ {1, · · · , |∆1|} and j ∈ {1, · · · , |∆3|}, we have:

P
(

B(i1) ∈ δ1
i , B(i5) ∈ δ3

j |B(i2) = a, B(i4) = b
)
=

N

∑
k=1

P(U = k|B(i2) = a, B(i4) = b)P
(

B(i1) ∈ δ1
i , B(i5) ∈ δ3

j |B(i2) = a, B(i4) = b, U = k
)
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=
N

∑
k=1

P(U = k|B(i2) = a, B(i4) = b)P
(

B(i1) ∈ δ1
i |B(i2) = a, U = k

)
P
(

B(i5) ∈ δ3
j |B(i4) = b, U = k

)
Let the M ∈ R|∆

1|×|∆3| be defined by Mi,j = P
(

B(i1) ∈ δ1
i , B(i5) ∈ δ3

j |B(i2) = a, B(i4) = b
)

, where i ∈
{1, · · · , |∆1|} and j ∈ {1, · · · , |∆3|}. For k ∈ {1, · · · , N}, i ∈ {1, · · · , |∆1|} and j ∈ {1, · · · , |∆3|},
let uk ∈ R|∆

1| and vk ∈ R|∆
3| be respectively defined by [uk]i = P

(
B(i1) ∈ δ1

i |B(i2) = a, U = k
)

and

[vk]j = P
(

B(i5) ∈ δ3
j |B(i4) = b, U = k

)
, and set λk = P(U = k|B(i2) = a, B(i4) = b). The previous

equation then becomes:

M =
N

∑
k=1

λkukvT
k . (5.2)

Note that the matrix M, the vectors uk and vk, and the constants λk, depend on our choice of a, b

and the partitions ∆1 and ∆3. Equation 5.2 implies that the identified matrix M has rank at most

N, for any choice of a, b, and of the partitions ∆1 and ∆3. By assumption 3.3 and by Lemma 17 of

Elizabeth, Matias, and Rhodes (2009), there exist 0 < b < a and partitions ∆1 and ∆3, such that the

collection of vectors {u1, · · · , uN} and {v1, · · · , vN} each form a linearly independent set, and the

coefficients λk are all positive. The corresponding matrix M thus has rank N. In conclusion, the

maximal rank of the identified matrices M over different choices of a, b and of the partitions ∆1, ∆2

and ∆3, is equal to N.

Let 0 < b < a and the partitions ∆1 and ∆3 be chosen such that the matrix M has maximal

rank N. A simple modification of Lemma 17 in Elizabeth, Matias, and Rhodes (2009) shows that

the partitions ∆1 and ∆3 can be chosen to have cardinality N: |∆1| = |∆3| = N. For this choice

of partitions, I now show how the terms on the RHS of 5.2 are identified (up to permutation of

indices). Let ∆2 be a partition of [a, b] such that |∆2| = N. For i, k ∈ {1, · · · , N}, let wk ∈ RN be

defined by [wk]i = P
(

B(i3) ∈ δ2
i |B(i2) = a, B(i4) = b, U = k

)
. By lemma 17 in Elizabeth, Matias, and

Rhodes (2009) and assumption 3.3, the partition ∆2 can be chosen such that the vectors {wk}N
k=1

are linearly independent. For p, i, j ∈ {1, · · · , N}, let the matrices Mp ∈ RN×N be defined by

[Mp]i,j := P
(

B(i1) ∈ δ1
i , B(i5) ∈ δ3

j |B(i2) = a, B(i4) = b, B(i3) ∈ δ2
p

)
.

Assumption 2.1 and the Markov property of order statistics yield

Mp =
N

∑
k=1

λp,kukvT
k , (5.3)

where λp,k = P(U = k|B(i2) = a, B(i4) = b, B(i3) ∈ δ2
p), and the vectors uk and vk are defined as in

the preceding paragraph. Let U ∈ RN×N (resp. V ∈ RN×N) be the matrix with kth column given

by uk (resp. vk), and let Λp ∈ RN×N (resp. Λ ∈ RN×N) be the diagonal matrix with kth diagonal

element given by λp,k (resp. λk). Equations 5.2 and 5.3 then respectively become

M = UΛVT and Mp = UΛpVT. (5.4)
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Since the columns of the matrices U and V are linearly independent (by the choice of partition)

and the diagonal elements of Λ are non-zero 25, the matrix M is invertible. For p ∈ {1, · · · , N},
define M̃p := Mp M−1 and Λ̃p = ΛpΛ−1, we get

M̃p = UΛ̃pU−1. (5.5)

Therefore, for p = 1, · · · , N, the identified matrix M̃p is similar to the diagonal matrix Λ̃p,

and the eigenvalues of M̃p identify the diagonal elements of Λ̃p. Let λ̃p,k denote the kth diagonal

element of the matrix Λ̃p, and let D ∈ RN×N denote the matrix with pth column given by the

diagonal elements of Λ̃p. A simple application of Bayes’ rule yields

λ̃p,k =
P(B(i3) ∈ δ2

p|B(i2) = a, B(i4) = b, U = k)

P(B(i3) ∈ δ2
p|B(i2) = a, B(i4) = b)

.

Therefore, by our choice of the partition ∆2, the matrix D has full rank, and an application of

Theorem 6 in Lathauwer, Moor, and Vandewalle (2004) implies that there exists a unique (up to

permutation of the columns) probability matrix26 that simultaneously diagonalizes the matrices

M̃p, for p = 1, · · · , N. In conclusion, the matrix U is identified up to a permutation of its columns.

Let e ∈ RN be given by e = (1, 1, · · · , 1)T. Since V is a probability matrix (see 26), the diagonal

elements of Λ are identified by

U−1Me = ΛVTe = Λe.

Finally, identification of Λ yields identification of V through

VT = Λ−1U−1M.

I have thus shown that all terms on the RHS of 5.2 are identified up to a permutation of the indices

k.

I now show that the cdfs FB|U=k for k ∈ {1, · · · , N}, which represent the common (by 2.1

and 2.2) marginal distributions of players’ bids given the UH, are identified. I begin by showing

that the conditional distributions FB(i1)|{B(i2)=a,U=k} , FB(i3)|{B(i2)=a,B(i4)=b,U=k} and FB(i5)|{B(i4)=b,U=k} for

k ∈ {1, · · · , N} are identified. For t ∈ [a,+∞], let x1(t) and y1(t) ∈ RN be defined by [y1(t)]i :=

P(B(i1) ≤ t, B(i5) ∈ δ3
i |B(i2) = a, B(i4) = b) and [x1(t)]i := P(B(i1) ≤ t|B(i2) = a, U = i) for

i ∈ {1, · · · , N}. By 2.1 and the Markov property, we have

y1(t) = VΛx1(t),

25For assumption 3.3 to hold, a and b must belong to the interior of the supports of the distributions FV|U=u (see 2.1).
26By a probability matrix I mean any matrix with non-negative entries such that the entries of each columns sum up

to 1.
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Where the identified matrices V and Λ are as in the preceding paragraph. The vector x1(t) is thus

identified through:

x1(t) = Λ−1V−1y1(t).

Identification of the vectors x1(t) t ∈ [b, a], yields the identification of the distributions {FB(i1)|{B(i2)=a,U=k}}
N
k=1

. Similarly, for t ∈ [a, b], let x2(t) and y2(t) ∈ RN be defined by [y2(t)]i := P(B(i3) ≤ t, B(i5) ∈
δ3

i |B(i2) = a, B(i4) = b) and [x2(t)]i := P(B(i3) ≤ t|B(i2) = a, B(i4) = b, U = i) for i ∈ {1, · · · , N}. A

similar argument to the one above yields

x2(t) = Λ−1V−1y2(t),

and the distributions {FB(i3)|{B(i2)=a,B(i4)=b,U=k}}
N
k=1 are identified. Finally for t ∈ [0, b], let x3(t) and

y3(t) ∈ RN be defined by [y3(t)]i := P(B(i5) ≤ t, B(i1) ∈ δ1
i |B(i2) = a, B(i4) = b) and [x3(t)]i :=

P(B(i5) ≤ t|B(i4) = b, U = i) for i ∈ {1, · · · , N}. An argument similar to the one above yields

x3(t) = Λ−1U−1y3(t),

where the identified matrix U is as in the preceding paragraph. The latter equality yields the iden-

tification of the distributions {FB(i5)|{B(i4)=b,U=k}}
N
k=1.

I now show how to recover the distributions FB|U=k for k ∈ {1, · · · , N}, from the identified

distributions {FB(i1)|{B(i2)=a,U=k}}
N
k=1 , {FB(i3)|{B(i2)=a,B(i4)=b,U=k}}

N
k=1 and

{FB(i5)|{B(i4)=b,U=k}}
N
k=1. By Lemma 5.1, the distribution of FB(i1)|{B(i2)=a,U=k} is the same as the dis-

tribution of the ith
1 order statistic from an i.i.d sample of size i2 − 1 from [FB|U=k(·|U = k) −

FB|U=k(a|U = k)]/[1 − FB|U=k(a|U = k)], i.e, from the parent distribution FB|U=k with the left

tail truncated at a. Similarly, the distribution of FB(i3)|{B(i2)=a,B(i4)=b,U=k} is the same as the distri-

bution of the (i3 − i2)th order statistic from an i.i.d sample of size i4 − i2 − 1 from the distribu-

tion [FB|U=k(·|U = k) − FB|U=k(a|U = k)]/[FB|U=k(b|U = k) − FB|U=k(a|U = k)]. Finally, the

distribution of FB(i5)|{B(i4)=b,U=k} is the same as that of the (i5 − i4)th order statistic from an i.i.d

sample of size I − i4 (where I denotes the number of bidders) from the distribution FB|U=k(·|U =

k)/FB|U=k(b|U = k). Hence, the cdfs FB|U=k(·|U = k)/FB|U=k(a|U = k), [FB|U=k(·|U = k) −
FB|U=k(a|U = k)]/[FB|U=k(b|U = k) − FB|U=k(a|U = k)] and [FB|U=k(·|U = k) − FB|U=k(b|U =

k)]/[1− FB|U=k(b|U = k)] are (respectively) identified from FB(i1)|{B(i2)=a,U=k}, FB(i3)|{B(i2)=a,B(i4)=b,U=k}
and

FB(i5)|{B(i4)=b,U=k}
27. It remains to show that FB|U=k(b|U = k) and FB|U=k(a|U = k) are identified.

However, a simple argument shows that FB|U=k(b|U = k) and FB|U=k(a|U = k) can be expressed

as functions of the density functions corresponding to the cumulative distribution functions iden-

27For instance, by Lemma 5.2 we have that FB(i5) |{B(i4)=b,U=k} = φi5−i4 :I−i4 ◦ (FB|U=k(·|U = k)/FB|U=k(b|U = k)), and

note that φi5−i4 :I−i4 is invertible.
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tified above, evaluated at the points a and b28. Therefore, the distributions {FB|U=k}N
k=1 are identi-

fied.

It now remains to identify the marginal distribution of the unobserved heterogeneity {P(U =

k)}N
k=1. By Bayes’ rule, we have

P(U = k) =
λk fB(i2),B(i4)(a, b)

fB(i2),B(i4)|U=k(a, b)
.

Here, fB(i2),B(i4)|U=k denotes the joint density of the ith
2 and ith

4 order statistics given U, which is

identified from FB|U=k; fB(i2),B(i4) denotes their unconditional distribution, and is identified from

the joint distribution of the observed bids; and λk is as in 5.2, and is identified since Λ is identified.

This concludes the proof of Theorem 3.10.

5.2.2 Proof of Theorem 3.9

Proof. As in the proof of Theorem 3.10, the following argument is done conditional on {I = I0}
where I0 is a value in the support of I, and by the same argument used in the second paragraph

of that proof, the cardinality N of the support of the unobserved heterogeneity U is identified.

Let Φ1 = (φ1
1, · · · , φ1

N), Φ3 = (φ3
1, · · · , φ3

N) and Φz = (φz
1, · · · , φz

N) be N−component vectors of

functions defined respectively on the support of B(i1)|B(i2) = a, B(i3)|B(i2) = a and Z. Let the

components {φ1
1, · · · , φ1

N} of Φ1 (a similar statement applies to the elements of Φ3 and Φz) be

indicator functions of N sets that form a partition of the support of B(i1)|B(i2) = a. Let the matrices

{Aj}N
j=0 (all of dimension N × N), be defined by:

A0 = E{Φ1(B(i1))Φ3(B(i3))T|B(i2) = a} fB(i2)(a) (5.6)

and

Aj = E{φz
j (Z)Φ1(B(i1))Φ3(B(i3))T|B(i2) = a} fB(i2)(a) (5.7)

for j = 1, · · · , N. Assumption 3.2 implies that

A0 =
N

∑
k=1

fB(i2)|U=k(a)P(U = k)E{Φ1(B(i1))|B(i2) = a, U = k}⊗ E{Φ3(B(i3))|B(i2) = a, U = k} (5.8)

and

Aj =
N

∑
k=1

fB(i2)|U=k(a)P(U = k)E{φz
j (Z)|U = k}

E{Φ1(B(i1))|B(i2) = a, U = k} ⊗ E{Φ3(B(i3))|B(i2) = a, U = k}
(5.9)

28Recall that by assumption, fV|U(·|U) is continuous.
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j = 1, · · · , N. The relations of equations 5.8 and 5.9 can be written in matrix form as

A0 = Q1Π(Q3)T (5.10)

and

Aj = Q1ΠDj(Q3)T (5.11)

for j = 1, · · · , N, where Qp (for p = 1 or 3) denotes the N × N matrix with kth column given by

E{Φp(B(ip))|B(i2) = a, U = k}, Π denotes the diagonal matrix with kth diagonal element given by

fB(i2)|U=k(a)P(U = k), and Dj (j = 1, · · · , N) denote the N × N diagonal matrix with kth diagonal

element given by E{φz
j (Z)|U = k}. Finally, let M denote the N × N matrix with jth row given by

the diagonal elements of the matrix Dj. By assumption 3.2, the components of Φ1, Φ3 and Φz can

be chosen such that the matrices Q1, Q3, M and A0 (see footnote 25) have full rank.

I now show that the matrix M is identified (up to a permutation of its columns) from the ma-

trices Aj. By assumption, the matrix A0 has full rank, and post-multiplying the other matrices Aj

by the inverse of A0 yields

Aj(A0)−1 = Q1Dj(Q1)−1 (5.12)

for j = 1, · · · , N. Hence the matrices Cj ≡ Aj(A0)−1 and Dj are similar, and the matrices {Cj}N
j=1

are simultaneously diagonalized by the matrix Q1. Moreover, since M has full rank, by Theo-

rem 6 in Lathauwer, Moor, and Vandewalle (2004), Q1 is the unique (up to a permutation of its

columns) probability matrix that simultaneously diagonalizes the matrices {Cj}N
j=1. Since the ma-

trices {Cj}N
j=1 are all identified from the data, it follows that the matrices {Dj}N

j=1, and hence the

matrix M, are identified.

I now show that the distribution of the unobserved heterogeneity is identified. Let δ = (P(U =

1), · · · , P(U = k))T and let d = EΦz(Z). Since d = Mδ, and M has full rank, the vector δ is

identified by

δ = M−1d. (5.13)

I finally show that the marginal (common) distributions of bids given the unobserved hetero-

geneity, FB|U=k (k = 1, · · · , N), are identified. For s ∈ R, let the vectors yp(s) and x(p)(s) (both in

RN ) for p ∈ {1, 2, 3}, be defined by yp(s) = E1{B(ip) ≤ s}Φz(Z), and let the kth element of x(p)(s)

be defined FB(ip)|U=k(s). Assumption 3.2 implies

yp(s) = M∆x(p)(s),

Where ∆ is the diagonal matrix with diagonal elements given by δ. Therefore, x(p)(s) is identified

by

x(p)(s) = ∆−1M−1yp(s). (5.14)
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The identification of the distributions FB|U=k then follows from the relations

FB(ip)|U=k(s) = φip :n ◦ FB|U=k(s) (5.15)

for p ∈ {1, 2, 3}, and where φi:n is as in equation 5.1.

5.2.3 Proof of Theorem 3.20

Proof. The proof is similar to that of Theorem 3.9 and Theorem 3.10. The following argument is

done conditional on {I = I0} where I0 is a value in the support of I. By considering the rank

of matrices formed by partitioning the domain of [B(i1)|B(i2) = a] and Z, an argument similar

to that used in the proof of Theorem 3.9 shows that N is identified. As in the definition of 5.6

and 5.7, let Φ1 = (φ1
1, · · · , φ1

N), Φz = (φz
1, · · · , φz

N) and Φ3 = (φ3
1, · · · , φ3

M) (with M ≥ N) be N

and M-component vectors of functions defined respectively on the support of [B(i1)|B(i2) = a], Z

and [B(i3)|B(i2) = a]. Let the components {φ1
1, · · · , φ1

N} of Φ1 (a similar statement applies to the

elements of Φz) be indicator functions of N sets that form a partition of the support of B(i1)|B(i2) =

a, and let the components of {φ3
1, · · · , φ3

M} be indicator functions of M sets that form a partition

of the support of B(i3)|B(i2) = a. By conditions 3.3 and 3.15, as in the proof of Theorem 3.10, the

partitions that form Φ1 and Φz can be chosen such that the N×N matrices Q1 and Qz are invertible,

where the matrix Q1 (resp. Qz) is such that its kth column is given by E{Φ1(B(i1))|B(i2) = a, U = k}
(resp. E{Φz(Z)|U = k}). And by condition 3.16 the partitions that form Φ3 can be chosen such that

the M × N matrix Q3 with kth column given by E{Φ3(B(i3))|B(i2) = a, U = k}, for k = 1, · · · , N,

has distinct columns. Let the matrices {Aj}M
j=0 be defined by

A0 = E{Φz(Z)Φ1(B(i1))T|B(i2) = a} fB(i2)(a) (5.16)

and, for j = 1, · · · , M

Aj = E{Φ3
j (B(i3))φz(Z)Φ1(B(i1))T|B(i2) = a} fB(i2)(a). (5.17)

Then as in 5.10 and 5.11, the matrices Aj have the representation

A0 = QzΠ(Q1)T (5.18)

and for j = 1, · · · , M

Aj = QzΠDj(Q1)T, (5.19)

where the matrix Π is as defined in 5.10, and the N × N matrix Dj (j = 1 · · · , M) is now the

diagonal matrix with diagonal elements given by the jth row of Q3. As in 5.12, we have

Aj(A0)−1 = QzDj(Qz)−1 (5.20)
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for j = 1, · · · , M. Hence the matrices Aj(A0)−1 and Dj are similar, and the matrices {Aj(A0)−1}N
j=1

are simultaneously diagonalized by the matrix Qz. Moreover, since the columns of Q3 are distinct,

by Theorem 6 in Lathauwer, Moor, and Vandewalle (2004), Qz is the unique (up to a permutation

of its columns) probability matrix that simultaneously diagonalizes the matrices {Aj(A0)−1}N
j=1.

Therefore Qz is identified. The rest of the identification argument proceeds as in the proof of 3.9

(the paragraph following 5.12).

5.2.4 Proofs on Genericity

I first establish the existence of an element G* ∈ C described before the statement of Proposi-

tion 3.22. First note that all elements of A are polynomials (see 5.2). It is then easy to check that

the element G* with ith element equal to the polynomial ti (t ∈ [0, 1]) has the desired property.

Indeed, given φ ∈ A, rank(φ ◦G*) = N, since all the elements of φ ◦G* are polynomials of distinct

degrees.

Before proceeding to the proof of proposition 3.22, I first recall some results from Anderson

and Zame (2001) that will be useful for the proof. By Fact 3 in Anderson and Zame (2001) (p.12),

the countable union of sets that are shy in C is shy in C. Hence, since Ea,b = ∪φ∈AEa,b,φ (a count-

able union), with Ea,b,φ defined by Ea,b,φ := {F ∈ C|min{rank(φ ◦ F[0,b]), rank(φ ◦ F[b,a]), rank(φ ◦
F[a,1])} < N}, it suffices to show that each Ea,b,φ is shy in C for each φ ∈ A. Let S1 = [0, b], S2 = [b, a]

and S3 = [a, 1]. Since Ea,b,φ = Ea,b,φ,1 ∪ Ea,b,φ,2 ∪ Ea,b,φ,3, with Ea,b,φ,i := {F ∈ C|rank(φ ◦ FSi) < N},
it suffices to show that each Ea,b,φ,i (i=1,2,3) is shy in C. Note that when Si is a singleton, the set

Ea,b,φ,i is empty, thus shy in C. Hence it remains to prove the each Ea,b,φ,i is shy in C when Si is a

non-degenerate interval.

Given a finite dimensional subspace V (say of dimension d) of X , let λV denote a Lebesgue

measure on V, defined by λV(A) = µd(T(A)), where T is an isomorphism between V and Rd , µd

denotes the Lebesgue measure on Rd and A is any Borel subset of V (see p.12 of Anderson and

Zame (2001)). I now provide the definition of a notion that is used in our proof below. The original

statement can be found in Anderson and Zame (2001) (p.12).

Definition 5.3. A Borel subset E of C is finitely shy in C, if there is a finite dimensional subspace

V ⊂ X such that λV(C + a) > 0 for some a ∈ X and λV(E + x) = 0 for every x ∈ X .

To establish that each set Ea,b,φ,i is shy in C, I use Fact 6 of Anderson and Zame (2001) which

states that: Every set which is finitely shy in C is shy in C. Therefore, to prove Proposition 3.22, it

suffices to prove the following proposition.

Proposition 5.4. Suppose that Si is a non-degenerate interval. Then each set Ea,b,φ,i is finitely shy in C.

Proof. I first consider the simple case when φ(t) = φ1:1(t) = t (for t ∈ [0, 1]), since the steps of the

argument are more transparent in that case. I provide the proof for a general φ ∈ A further below.
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Simple case. Let f = ( f1, · · · , fN) be an N−tuple of density functions supported on Si that are

linearly independent and bounded away from zero on Si.29 Let h = (h1, h2, · · · , hN) denote an N−
tuple of bounded functions that are linearly independent and supported on Si, with

∫ 1
0 hi(t)dt = 0

for i = 1, · · · , N.30 Let F = (F1, · · · , FN) ∈ C and H = (H1, · · · , HN) ∈ X be defined by

Fi(s) =
∫ s

0
fi(t)dt and Hi(s) =

∫ s

0
hi(t)dt, (5.21)

for i = 1, · · · , N and s ∈ [0, 1]. Let the one-dimensional subspace V of X be defined by V =

{αH|α ∈ R} with the “Lebesgue” measure on V, λV , given by λV(A) = µ1{α|αH ∈ A}, where µ1

denotes the Lebesgue measure on the real line and A denotes any Borel subset of V. I show below

that λV(C − F) > 0 and that λV(Ea,b,φ,i − x) = 0 for all x ∈ X .

We have

λV(C − F) = µ1({α|αH ∈ C − F})

= µ1({α|F + αH ∈ C}) > 0.
(5.22)

The latter inequality holds because for all values of α bounded in absolute value by some α∗ > 0,

F + αH ∈ C.31

I now show that λV(Ea,b,φ,i − x) = 0 for all x ∈ X . Let us assume for now that the sets Ea,b,φ,i

are Borel measurable; I will show further below that they are indeed closed. I establish the claim

by showing that for each x ∈ X , the set {α|αH ∈ Ea,b,φ,i − x} has finitely many elements. We

have {α|αH ∈ Ea,b,φ,i − x} = {α|G := x + αH ∈ C and rank(GSi) < N}. Suppose that i = 1

and S1 = [0, b] with b > 0 (the other cases are similar). The set Ax := {α|G := x + αH ∈
C and rank(GS1) < N} can be decomposed as Ax = Ax,1 ∪ Ax,2, where

Ax,1 = {α|G := x + αH ∈ C, GS1 6∈ C}

and

Ax,2 = {α|G := x + αH ∈ C, GS1 ∈ C and rank(GS1) < N}.

Given the definition of the renormalization GS1 of G on S1, α belongs to the first set Ax,1 if and only

if one component of the corresponding GSi is the zero function. This occurs when a component of

G := x + αH ∈ C does not vary on S1. Let x = (x1, · · · , xN), I now show that for each j = 1, · · · , N

there is at most one value of α such that G = x + αH ∈ C and the jth component of G does not

29An example of such densities would be the restriction and re-normalization of the following N−tuple of functions

(t + 1, t2 + 1, · · · , tN + 1) (where t ∈ [0, 1]) on the set Si, the constant 1 being added to each component to guarantee

that the re-normalized densities are bounded away from zero on Si. Recall that a non-trivial linear combination of

polynomial of distinct degrees cannot vanish on an interval.
30Let h be, for instance, equal to the (component-wise) difference of the re-normalizations (to densities) of

(t2, t3, · · · , tN+1) and (t, t2, · · · , tN) on the set Si.
31 Recall that (by construction) the elements of h are bounded and supported on Si, and the elements of f are bounded

away from zero on Si. Hence for all α sufficiently small, the elements of f + αh are densities.
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vary on S1. Suppose, for a contradiction, that there are two such distinct values α1 and α2, and that

xj(t) + α1Hj(t) = c1 and xj(t) + α2Hj(t) = c2 for all t ∈ S1 and for some constants c1 and c2. Taking

the difference of the two quantities and using the fact that α1− α2 6= 0 yields that the component Hj

is constant on the interval S1. This contradicts the fact that by construction Hj is differentiable with

a non-zero derivative on S1. This shows that the set Ax,1 is finite (at most N elements) and has µ1

measure zero. It now remains to show that Ax,2 is finite. This will be achieved by a discretization of

the elements of C. Since the components of H are linearly independent on S1 (by construction, the

derivatives of the components are linearly independent on S1), there exists a sequence of N distinct

points 0 < t1 < · · · < tN < b such that the vectors {H(ti)}N
i=1 (with H(ti) := (H1(ti), · · · , HN(ti)))

span RN 32. Set ∆ = {t1, · · · , tN}. Given O = (O1, · · · , ON) ∈ X (not necessarily a vector of

CDFs), let M(O, ∆) denote the N + 1× N matrix with (i, j)th element given by

[M(O, ∆)]i,j = Oj(ti−1)−Oj(ti), (5.23)

where we define t0 = 0 and tN+1 = b. Note that the matrix M(H, ∆) has full column rank, since the

span of its rows is equal to the span of the vectors {H(ti)}N
i=1, and that the column rank of M(O, ∆)

is less than N whenever the components of O, restricted to the set [0, b], are linearly dependent. If

α ∈ Ax,2, it must be the case that the components of the function G = x + αH are linearly dependent

on S1. Indeed, because GS1 belongs to C, it necessarily holds that each component Gj of G satisfies

Gj(b) 6= 0, and because rank(GS1) < N, it must be the case that the components of G are linearly

dependent on S1.33 Therefore, we have

Ax,2 ⊂ Ax,3 := {α|G := x + αH satisfies rank(M(G, ∆)) < N}. (5.24)

It thus remains to show that Ax,3 is finite. Below, for notational simplicity, I omit the ∆ in the

notation for M(·, ∆) and simply write M(·). Let P(α) denote the polynomial function of α defined

by P(α) = det(M(G(α))T M(G(α))), where G(α) := x + αH. I prove the claim by showing that all

elements of Ax,3 must be roots of the polynomial P and I show that the polynomial P is non zero.

Indeed, since M(·) is linear in its argument, we have

P(α) = det
(

M(x)T M(x) + α{M(x)T M(H) + M(H)T M(x)}+ α2M(H)T M(H)
)

.

Hence P has degree at most 2N, and P(α) = α2NQ(1/α) (for α 6= 0) where Q is the polynomial

given by

Q(α) = det
(

α2M(x)T M(x) + α{M(x)T M(H) + M(H)T M(x)}+ M(H)T M(H)
)

.

Since Q(0) = det(M(H)T M(H)) 6= 0 (by construction), we conclude that P is non-zero with at

most 2N roots. Therefore Ax,2 is a finite set.
32By construction H(0) = H(b) = 0, hence the points ti must all belong to (0, b)
33 Note that the restriction of the jth components of the latter to the set S1 is obtained by multiplying the jth component

of GS1 by the value Gj(b).
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I now show, as claimed above, that the set Ea,b,φ,i is closed, by showing that its complement

is relatively open in C (recall that C is closed in X ). Given an element F ∈ C in its comple-

ment, it must be the case that the components of F are linearly independent on Si, and by using

an argument similar to the one above, a set of points ∆ in Si can be found such that the corre-

sponding matrix M(F, ∆) (defined as above) has full column rank N. Using the continuity of

the function det(M(F, ∆)T M(F, ∆)) with respect to F ∈ C (as a function on X ), and the fact that

det(M(O, ∆)T M(O, ∆)) > 0 only if the components of O are linearly independent, we conclude

that a neighborhood of F in C belongs to the complement of Ea,b,φ,i, and the complement of the set

Ea,b,φ,i is relatively open in C.

General case. Let the function φ now be a general element of A. Since the elements of A are

polynomials, φ has the representation

φ(t) =
d

∑
k=1

aktk, (5.25)

for all t ∈ [0, 1],34 for some finite d (the degree of φ) such that ad 6= 0. Let F = (F1, · · · , FN) ∈ C
and H = (H1, · · · , HN) ∈ X be defined as in 5.21, with the particular choice of the functions f

and h given by 29 and 30. Also, let the subspace V ⊂ X and the measure λV be the same as

above. The same argument used in 5.22 yields λV(C − F) > 0. Thus it only remains to prove that

λV(Ea,b,φ,i − x) = 0 for all x ∈ X . Fix x ∈ X . We have

λV(Ea,b,φ,i − x) = µ1({α|G := x + αH ∈ C and rank(φ ◦ GSi) < N}).

I show below that the set Bx := {α|G := x + αH ∈ C and rank(φ ◦ GSi) < N} has finitely many

elements, hence µ1 measure zero. As above, suppose (without loss of generality) that i = 1 and

S1 = [0, b] with b > 0 (the other cases are similar). Decompose Bx as Bx = Bx,1 ∪ Bx,2 where

Bx,1 = {α|G := x + αH ∈ C, GS1 6∈ C}

and

Bx,2 = {α|G := x + αH ∈ C, GS1 ∈ C and rank(φ ◦ GS1) < N}.

That the set Bx,1 is finite, follows from the same argument used to show that Ax,1 is finite. Suppose

Bx,2 is non-empty. Then for α ∈ Bx,2 and G := x + αH, it necessarily holds that all components of G

do not vanish at the point b, and that Gj(b) = xj(b) + αHj(b) = xj(b) > 035 for j = 1, · · · , N. Also,

since each component of G and H vanishes at 0, it follows that each component of x also vanishes

at 0. Hence for Bx,2 to be non-empty, it is necessary for all components of x to be strictly positive

34Note that the polynomial φ has no constant term since φ(0) = 0 (φ is a distribution).
35Recall that by construction, all components of H vanish at b (see 5.21).
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at b and to all vanish at 0. Let us assume that this is the case. Then for α ∈ Bx,2 and G := x + αH

GS1 can be written as

GS1 = x′ + αH’

where the elements x′ and H’ are defined in accordance with the definition of GS1 . That is, the

jth component of x′ is given by x′j(t) = xj(t)/Gj(b) = xj(t)/xj(b) for t ∈ [0, b] and x′j(t) =

xj(b)/xj(b) = 1 for all t ∈ [b, 1]. Similarly, the jth component of H’ is given by H′j(t) = Hj(t)/xj(b)

for t ∈ [0, b] and H′j(t) = Hj(b)/xj(b) = 0 (see 5.21) for all t ∈ [b, 1]. Note that both x′ and H’ do

not depend on α, and that by construction (see 30 and 5.21), the components of H’ (restricted to

[0, b]) are equal to polynomials of different degree. Hence given any integer k ≥ 1, the components

of (H’)k are linearly independent,36 as their restriction on [0, b] is also given by polynomials of

different degrees. In particular, when the exponent is equal to the degree d of φ, (see 5.25) the com-

ponents of (H’)d are linearly independent. A similar argument to the one preceding 5.24 implies

that there exists a set ∆ = {t1, · · · , tN} of points in [0, b] (not necessarily the same points as before)

such that the matrix M((H’)d, ∆) has full column rank, with the transformation M(·, ∆) defined as

in 5.23, and an argument similar to the one used to establish 5.24 implies that

Bx,2 ⊂ Bx,3 := {α|G := x′ + αH’ satisfies rank(M(φ ◦G, ∆)) < N}.

Using the linearity of the transformation M(·, ∆) and the representation 5.25 of φ, it is easy to show

that

M(φ ◦G, ∆)) = adαd M((H’)d, ∆) + R(α),

where R(α) is a polynomial (with N + 1× N matrix coefficients) of degree at most d− 1 in α; that

is:

R(α) =
d−1

∑
k=0

αk Mk

where Mk, for k = 0, · · · , d− 1, are N + 1× N matrices. Below, for notational simplicity, I write

M(·) for M(·, ∆). Let the polynomial P be defined by

P(α) = det
(
{adαd M((H’)d) + R(α)}T{adαd M((H’)d) + R(α)}

)
= det

(
a2

dα2d M((H’)d)T M((H’)d) + R̃(α)
)

for a polynomial R̃ with N× N matrix coefficients of degree at most 2d− 1 in α. The polynomial P

has degree at most 2dN, and since det
(

M((H’)d)T M((H’)d)
)
6= 0, an argument similar to the one

used in the simple case implies that P has at most 2dN roots. Hence the set Bx,3 is finite, and this

concludes the argument.

Proof of 3.23. Corollary 3.23 is an easy consequence of 3.22, 5.1 and 5.2.
36Given F = (F1, · · · , FN) ∈ X and an integer k ≥ 1, the kth power of F is given by Fk = (Fk

1 , · · · , Fk
N).
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5.2.5 Proof of Theorem 3.29

Proof. By considering the rank of matrices formed by partitioning the domain of [B(i1)|B(i2) = a]

and Z an argument similar to that used in the proof of Theorem 3.10 shows that N (the number

of support points of the unobserved heterogeneity) is identified. As in the proof of 3.20, let Φ1 =

(φ1
1, · · · , φ1

N), Φz = (φz
1, · · · , φz

N) and Φ3 = (φ3
1, · · · , φ3

M) (with M ≥ N) be functions defined

respectively on the support of [B(i1)|B(i2) = a], Z and [B(i3)|B(i2) = a], and let Q1, Qz and Q3

denote the associated matrices (where we now exclude I from the conditioning variables). As

in the proof of 3.20, by Assumption 3.26 the functions Φ1, Φ3 and Φz can be chosen such that

the matrices Q1 and Qz are invertible and the matrix Q3 has distinct columns. Let the matrices

{Aj}M
j=0 be defined as in equations 5.16 and 5.17 (without conditioning on I). Using the law of

iterated expectation (conditioning on U and I), equations 3.19 and 3.20, and the Markov property

of order statistics, equations 5.18 and 5.19 can be shown to hold. A similar argument to the one

preceding equation 5.19 then shows that Qz is identified. An argument similar to the one used

in the paragraph following 5.12 in the proof of Theorem 3.9 shows that the distribution of U is

identified. By considering the identified expectations E1{B(i1) ≤ s1, B(i2) ≤ s2, B(i3) ≤ s3}Φz(Z)

for different values of s1, s2 and s3 in R, an argument similar to 5.14 shows that the distributions

{FB(i1),B(i2),B(i3)|U=n}
N
n=1 are identified. The observation of Song (2004) (see 3.19) can now be used to

identify the distribution FB|U=n by considering the distribution of [B(i1)|B(i2) = a, U = n] for values

of a near the lower bound of the support of B(i2).
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