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Baseflow Analysis
Objectives

1. Understand the conceptual basis of baseflow analysis.

2. Estimate the baseflow component of stream hydrographs.

Baseflow definition and significance

Portion of (stream) flow that comes from groundwater or other 
delayed sources (Tallaksen, 1995. J. Hydrol., 165: 349).

Understanding of low-flow condition is important for water 
resource management and environmental protection.

 Why?

We will review:
(1) Baseflow recession analysis
(2) Baseflow separation technique
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Stream discharge gradually 
decreases after storm events.

baseflow

Various baseflow ‘separation’ 
techniques have been proposed.

What purpose?

Regardless of sophisticated 
algorithms, they are all arbitrary.

Recession hydrographs 
commonly plot as straight 
lines on a semi-log graph.

Q(t) = Q0exp(-at)

Q0 : discharge at t = 0
a : constant (s-1)

What causes the exponential 
behaviour?
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A more general reservoir model is given by:

Q
dt

dS
Q = aSp and

p: dimensionless constant

Non-linear (p > 1) reservoir represents the 
effects of complex processes such as the 
transmissivity feedback.
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Reservoir model for recession analysis

Exponential function is the solution of:

Q
SQ

dt

dS
Q = aS   and (linear reservoir)

The solution of the non-linear reservoir equation is:

Q(t) = Q0(1 + at)-p / (p - 1)

See Tallaksen (1995) for a comprehensive review.

S: volume of water stored (m3)

Baseflow from a homogeneous, 
confined aquifer is described by:
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x = 0 x = B

h = hs

Physically-based aquifer model
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Boundary conditions and the initial condition

h(x0) = hs for all t > 0

No flow at the divide (x = B)     for all t > 0

T = Kb : transmissivity (m2 s-1)
Sc = Ssb : storage coefficient or storativity

Rorabaugh (1964. Int. Assoc. Scientific Hydrol. Pub. 63: 432-441, Eq.1) reported 
the Fourier-series solution for the flow per shore length, q (m2 s-1):

q = (2Th0/B)[exp(-at) + exp(-9at) + exp(-25at) + … ]

where   a = 2T / (4B2Sc)

q

piezometric surface, not WT

h0

h = hs + h0 at t = 0                      for all 0 ≤ x ≤ B
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High-order terms in the series are 
negligible for t / (B2Sc/T) > 0.2.

tc = 0.2 B2Sc / T is called ‘critical time’.

q  q0  exp{-at}  for t > tc 

where q0 = 2Th0/B

Note the similarity between this and the 
exponential decay equation of hydrograph 
in Page 2.

→ What does this mean?

Remember the recession coefficient in this model: a = 2T / (4B2Sc).

The recession coefficient in Page 2 represents the average 
properties of aquifer over the entire watershed.

Note:  T / Sc = K / Ss = Dh ← Hydraulic diffusivity (unit?)

What is the unit of a?           Unit of 1/a?
→ Hydrologic response time

1            2           3
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Models for unconfined aquifer

x = 0 x = B

Dc

Dh(x,t)

Streams are usually connected to unconfined, not confined, 
aquifers. Rigorous analysis of unconfined aquifers would require 
solutions of the Richards equation. 

The Dupuit-Forchheimer (D-F) approach offers a reasonable 
approximation of complex problems (e.g., Paniconi et al., 2003. Water 

Resour. Res., 39: 1317). The transient flow equation based on the D-F 
approximation is called the Boussinesq equation:

t

h
S

x

h
Kh

x y 
















Exact solutions of the non-linear Boussinesq equation is available 
only for special cases. Brutsaert (2005, Hydrology – an introduction. Ch. 

10, Cambridge Univ. Press) presented a summary of various solutions 
for the cross section shown above.

K: aquifer conductivity (m s-1)
Sy: drainable porosity
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Drainage of riparian aquifer

A riparian aquifer becomes fully 
saturated after a heavy storm (t = 0).

This solution considers gradual 
drainage of a hillslope after some time. 

Approximate analytical solution is obtained by ‘linearizing’ the 
Boussinesq equation:
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where hm is the ‘average’ saturated thickness. 

Solving the linearized equation, drainage flux per shoreline is:

q = (2KhmD /B)[exp(-at) + exp(-9at) + exp(-25at) + … ]

where   a = 2Khm / (4B2Sy)

x = 0 x = B

Dc

D

q 

This is almost identical to the Rorabaugh (1964) equation.

Therefore, for t > 0.2B2Sy / Khm

q  (2KhmD /B) exp[- 2Khmt / (4B2Sy)]

q: flow per shore length (m2 s-1) 
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Brutsaert (2005, p.400) proposed expressing hm as a fraction of D:

hm = pD    where p  0.35   for Dc << D
p  (D + Dc)/(2D) for other cases

Using p, the flux is written as (Brutseart, 2005, Eq.10.116):

q = (2KpD2 /B) exp{- 2KpDt / (4B2Sy)}

Total baseflow Q (m3 s-1) at the watershed outlet is 
(Brutseart, 2005, Eq.10.164):

Q = 2L  (2KpD22L/A) exp{- 2KpDt 4L2/ (4A2Sy)}

= (8KpD2L2/A) exp{- 2KpDL2t/(A2Sy)} Eq. [3]

Eq. [2]

A

L

B

We note that the average distance from the channel 
to drainage divide, B, can be estimated by:

B = A / (2L)

 Why?

Watershed-scale behavior of baseflow is exponential.

The decay coefficient contains information on hydraulic 
properties of the watershed.
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Real Stream Example: West Nose Creek, Calgary

heavy storm baseflow

Hayashi and Farrow (2014. Hydrogeol. J. 22: 1825-1839)
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Riparian plants 
start ‘pumping’

Transpiration 
stops
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Why does the decay coefficient vary?

Exponential Decay?

1/a = 6 day Q(t) = Q0exp(-at)
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Linear reservoir and exponential recession

Q = Q0exp(at) is the solution of:

Q
SQ

dt

dS
Q = aS   and (linear reservoir)

In reality, 

Q = f(S) ← Complex function (non-linear, hysteretic) 

Q
dt

dS
  E ← Evapotranspiration

The catchment scale storage-discharge function, f(S) still contains 
useful information.  → See Kirchner (2009, Water Resour. Res. 45, W02429).
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Baseflow separation
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Given a hydrograph, ‘quick’ flow and 
baseflow can be separated by a 
number of different methods.

- Connecting local minima

- Variation of local-minima method

All methods use arbitrary criteria for baseflow, and are time 
consuming for manual operation.

Automated techniques are at least objective, and are efficient for 
processing many data sets.

We will use a digital-filter algorithm of Arnold et al. (1995. Ground 

Water, 33: 1010) to demonstrate the usefulness and limitation of 
automated baseflow separation. 

- Using inflection points
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        0.9
    0.925
    0.95

 =
In this example from the Marmot 
Creek watershed in 2005, the filter 
was applied with three different 
values of .

The case with  = 0.95 appears to 
have produced the most ‘reasonable’ 
separation result.
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Recursive digital filter

The algorithm, originally described by Nathan & McMahon (1990. 

Water Resour. Res. 26: 1465), calculates the quick flow component qi at 
time step i from qi-1 at previous time step and total flow Qi and Qi-1:

)( 11 2

1
 


 iiii QQqq



where  is a filter constant ranging between 0.9 and 0.95.

Baseflow bi is calculated as:    bi = Qi – qi
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Baseflow index

By applying the digital filter to the entire 2009 summer discharge 
data set (May 1- September 10) for Marmot Creek, it was found 
that:

Total discharge = 2.48  106 m3

Total baseflow  = 1.77  106 m3

The ratio of total baseflow to discharge is base flow index (BFI).

In this example, BFI = 1.77 / 2.48 = 0.76.

Automated baseflow separation offers a convenient tool to 
calculate BFI for multiple watersheds having different size and 
geology, or for a single watershed in multiple years having 
different meteorological forcing or land-use practice.

We will use a computer program Baseflow with a sample data 
set from the Marmot Creek watershed in a computer exercise to 
calculate BFI. 
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Computer exercise: Baseflow separation



Groundwater is connected to streams
Water balance is key to understand the connection

Long-term balance (storage change ≈ 0):

Recharge ≈ Discharge + Pumping

= Storage Change
(water level )

− DischargeRecharge − Pumping
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Use baseflow to estimate watershed-scale recharge.

Monitoring well

5 km

Community-based monitoring 
network using private water 
supply wells.

Stream gauging

West Nose Creek Hydrological Observatory

Meteo./Soil/Runoff

Surface flux / soil moisture

Snowmelt runoff
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Present recharge ≈ 18-19 mm y-1, much larger than GW 
extraction rate of 3 mm y-1

.

→ What if the drier condition of the 1980s returns?
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