Lecture 4: Baseflow Analysis

Baseflow definition and significance

Portion of (stream) flow that comes from groundwater or
other delayed sources (Tallaksen, 1995. J. Hydrol., 165: 349).

Understanding of low-flow condition is important for water
resource management and environmental protection.

— Why?

In this lecture, we will review:
(1) Concept of baseflow recession
(2) Baseflow separation technique
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Stream discharge gradually Recession hydrographs
decreases after storm events. commonly plot as straight

i . lines on a semi-log graph.
Various baseflow ‘separation’ ggrap

techniques have been proposed. Q(f) = Qpexp(-at)
Q, : discharge at t=0
a : constant (s™)
What causes the exponential
behaviour?

What purpose?

Regardless of sophisticated
algorithms, they are all arbitrary.




Reservoir model for recession analysis

Exponential function is the solution of: v
Q=aS and % =—-Q (linear reservoir) S
S: volume of water stored (m?3) —g
Q(t) = Qpexp(-at) higher a — faster recession

Q, : discharge at t=0
What controls a?
 Hydraulic conductivity of aquifer(s): K (m s-)
* Specific yield of aquifer(s): S, (unitless)
 Slope of the catchment: A (unitless)
» Average length of slope: L (m)

a o KxA — Heuristic thinking (informal)
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Dimensional analysis (formal)

Real Stream Example: West Nose Creek, Calgary
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Exponential Decay?
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Why does the recession constant (a) vary?

Baseflow separation

Given a hydrograph, ‘quick’ flow and
baseflow can be separated by a
number of different methods.

- Connecting local minima
- Variation of local-minima method

discharge

- Using inflection points

time

All methods use arbitrary criteria for baseflow: convenient fiction.
— See Lecture 1, slide 42.

They are also time consuming and labour intensive.

Automated techniques are at least objective and efficient for
processing many data sets.

We will use a digital-filter algorithm of Arnold et al. (1995. Ground
Water, 33: 1010) to demonstrate the usefulness and limitation of
automated baseflow separation.




Recursive diqital filter

The algorithm, originally described by Nathan & McMahon (1990.
Water Resour. Res. 26: 1465), calculates the quick flow component q; at
time step i from q,, at previous time step and total flow Q; and Q, ,:

1+ 6
2

q; =59, .+ (Q;-Q;.)

where fSis a filter constant ranging between 0.9 and 0.95.

Baseflow b; is calculated as: b;=Q; —q;
2
In this example from the Marmot — Total Q
Creek watershed in 2005, the filter | | || — £=0.9
= -~ 0.925

was applied with three different

0.95

values of £.

The case with g= 0.95 appears to
have produced the most ‘reasonable’
separation resulit.

Baseflow index

By applying the digital filter to the entire 2009 summer discharge
data set (May 1- September 10) for Marmot Creek, it was found
that:

Total discharge = 2.48 x 106 m3
Total baseflow =1.77 x 106 m3

The ratio of total baseflow to discharge is base flow index (BFI).
In this example, BFI =1.77 / 2.48 = 0.76.

Automated baseflow separation offers a convenient tool to
calculate BFI for multiple watersheds having different size and
geology, or for a single watershed in multiple years having
different meteorological forcing or land-use practice.

We will use a computer program Baseflow with a sample data
set from the Marmot Creek watershed in a computer exercise to
calculate BFI.




Baseflow Separation Exercise

Water Balance for Sustainable GW Management

Recharge - Discharge - Pumping = Storage Change
(water level T)

Long-term balance (dynamic equilibrium):

Recharge — Pumping = Discharge

Over pumping may cause:
- Large drawdown of groundwater level storage depletion
(wells going dry, land subsidence, etc.).

- Reduction of baseflow, or drying of springs. surface water
capture
10




Effects of GW Pumping on Stream Flow
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Long-Term Effects of Groundwater Extraction
Example from Kansas, U.S.

Ogallala Aquifer K
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Water Balance under Long-Term Equilibrium

bR

Recharge — Pumping — Discharge = 0

Recharge = Discharge|+ Pumping

Use baseflow to estimate watershed-scale recharge.
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West Nose Creek Hydrological Observatory
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Baseflow (mm y-)

West Nose Creek Baseflow

Water level (m)
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1980 1985 1990 1995 2000 2005 2010 2015
Recharge = Discharge + Pumping

Total groundwater extraction = 2-3 mm y-1

Recharge = 6-7 mmy-'in 1982-1995
18-19 mm y-' in 2003-2018

Hayashi and Farrow (2014. Hydrogeol. J. 22: 1825-1839)
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Present recharge = 18-19 mm y-!, much larger than GW
extraction rate of 3 mm y-'
— What if the drier condition of the 1980s returns?

Hayashi and Farrow (2014. Hydrogeol. J. 22: 1825-1839)




