Discussion Questions

1. This study examines the ethical and privacy dangers that emerge when healthcare data analysis utilizes the Apriori algorithm as demonstrated by the "Head and Neck Cancer Medications" case study. How can these risks be mitigated?

Answer: The Apriori algorithm may disclose sensitive patient information via frequent itemsets which could result in privacy violations and inference attacks along with concerns about group privacy. The correlation between uncommon diseases and specific medications may reveal individual patient health details. Anonymization techniques together with strict data access controls and adherence to privacy regulations such as HIPAA need enforcement to mitigate these risks. Differential privacy methods offer protection for personal identities while retaining valuable analytical information.

2. The Apriori algorithm employs a "bottom-up" method to discover frequent itemsets. Describe how this procedure operates and discuss the reasons for its computational expense when processing large datasets.

Answer: The Apriori algorithm first finds frequent individual items known as 1-itemsets before incrementally building larger sets of items (2-itemsets, 3-itemsets, etc.) by combining previously identified frequent sets. Multiple dataset scans are necessary to generate a large number of potential itemsets which must then be checked for their support. Exponential growth in possible combinations results when datasets expand which leads to substantial computational expenses and memory usage. Approaches like FP-Growth combined with optimized data structures offer solutions to reduce computational costs.

3. What preprocessing steps are required in the Jupyter Notebook before applying the Apriori algorithm to the grocery transaction dataset?

 Answer:
 Before applying the Apriori algorithm, the Jupyter Notebook performs the following preprocessing steps:
 1. Data Loading– Reads the transaction dataset into a Pandas DataFrame.
 2. Transaction Formatting– Converts the dataset into a structured format where each transaction is represented as a list of purchased items.
 3. One-Hot Encoding– Transforms the dataset into a binary matrix format required by the `mlxtend` library, where each row represents a transaction and each column corresponds to an item (1 if purchased, 0 otherwise).
 4. Applying Apriori– Uses the formatted data as input to the `apriori` function to generate frequent itemsets and extract association rules.
