ISEC?601_1*_;‘

Teachlng Alde -
Password- Based Key Derlvatlon
FU"Ct'OH 2 P s T

PBKDF2 Bundlng blocks & How |ts Used

'Hlstory

HMAC e |
: How it works (Key Derlvat|on Saltlng, Iteratlons)
| Development / how pbkdf2 progressed Cooper
Security Assessment = | :

Main Application i . ,.
' Future / New Standard/ Alternatlves :

Conclusion

History-

Password Length All Characters

: ; 3 characters 0.86 seconds 0.02 seconds
= MOSt UserS SeleCt password In lOW et 4 characters 1.36 minutes .046 seconds
: S 5 characters 2.15 hours 11.9 seconds
randomness (password 123456) S : 6 characters 8.51 days 5.15 minutes
_ SRR I 7 characters 2.21 years 2.23 hours
g : 8 characters 2.10 centuries 2.42 days
o ThlS make the number Of attem pt an SEme 9 characters 20 millennia 2.07 months
: ; b e S 10 characters 1,899 millennia 4.48 years
attaCker need tO try fairly IOW i 2 11 characters 180,365 millennia 1.16 centuries
: e 17,184,705
- 12 characters millennia 3.03 millennia
- The higher entropy password are more - 1,627,797,068
) S 13 characters millennia 78.7 millennia

difficult tO brute force o b A 154,640,721,434

14 characters | millennia 2,046 millennia

History

G (N P T .';"A.Top.'ZO‘ passwords ofLihk_edInﬂUéers in 2012

linkedin 172,523
password [144,458

123456789 (94,314 . R P ool e S IR Sl 8
12345678 63,769 - - Standard hashing ineffective algorithms such as
111111 57,210 £ o G : RSt . -
1234567 49,652 -~ MD5 os SHA-1 are fast but low entropy
sunshine [39,118 SRS AR e il S e : : v

9 qwerty 37,538 S : : ; : ey

10 654321 33,854
11 Joooooo 32,490
12 password1l [30,981
13 |abc123 30,398
14 charlie 28,049
15 |linked 25,334
1) maggie 23,892 : SRS s S
17 |michael |23,075 i R e s . g
18 |666666 22,888 e T LSRELTE E Sl s
19 princess 22,122
20 |123123 21,826

O [N[a[a|[h[W][N

Hlstory

Imaglne you need to transmlt data over msecure ohannel What would you
: Enorypt it usmg a password rlght’?

Most people would do that. o , :

Most people would also’ choose a short easy to remember password

This makes |t for.a huge vulnerablllty to brute—force attacks

Is there anythlng that wouId help us mltlgate that’?

One way to do this is to encrypt data with a Key that was derived from a
Password Here IS where Key Derlvatlon Functlons (KDF) come in handy

. The flrst standardlzed KDF was Password Based KDF 2 (PBKDF2)
Introduced in 2000 by RSA Laboratorles in RFC 2898 =

~Before it, there was a PBKDF1 WhICh dldnt produce Iarge enough keys and ',
thus, was vuInerabIe | , ,

Authentlcrcy and Integrlty

_HMAC is a type of MAC A
Using the Password as HMAC
key establish Authenticity |

- HMAC ensures: Integrlty e

' MAC
How can we |dent|fy who |s :
behind a device 2= - i

- (Authenticity) -

How can we ensure that the
message was not altered - FYNTIIpIIRre eeur (VRGNS
during transmission? ' authentic en alterec

(Integrity)

, MACs are. caIled Cryptographlc checksums (Integrrty)

[m || h(m)] -> hashing the message alone is insecure

- _|If only the sender and recerver know the key we can assume
“authenticity | - N

Tag=[M || h(k | m)] k IS shared by the sender and recelver |

MAC is still vulnerable to extension attacks "

HMAC(K, M) = H((K ® opad) /| H((K' ® |pad) Vi M)) |

Ipad 0x36 constant and opad 0x5¢ with Iong hammlng d|stance

only someone with the secret key can generate or verrfy the

HMAC. -~ © .

HMAC as the PRF

o HMAC comblnes a secret key W|th a cryptographlc hash functlon (SHA 912)
° HMAC s often used as a Pseudo Random Functlon
"o ltis collision-resistant

e It produces outputs of b‘red‘ictab.l-e:.;fixed.size' —-'

Short keys érei
more vulnerable to_
brute-force attack.

v
°
c
o
[*)
@
9]
o
£
=
c
=]
@

PBKDF2 Runtime with HMAC

—8— HMAC-SHA256
HMAC-SHA512

<

10,000 100,000

Iteration Count

1,000,000

How it works
As stated by IETF PBKDF2 applles a pseudorandom functlon to derive keys

PBKDF2 aIIows various pseudorandom functlons to be included (PRF)
The length of an output of such a function is denoted as hLen (measured in bytes) It
s aIso a length of each lnd|V|duaI block that WI|| make up the flnal key.

PBKDF2 function takes in four varlables » .

P - Password from which the key is derlved (strlng)
S - salt (string) - S

- iteration count (mteger) S e Ll o
dkLen intended Iength of the derlved key (mteger bytes) Sk . b

-' :"_ "‘%. S :

And outputs DK (derlved key)

Let’s take a closer Io_ok!'-- e

How |t works

1) Flrst PBKDF2 takes hLen (2"32 1) and compares it to dkLen
If DkLen IS blgger PBKDF2 will return an error »

This means that. 2’\32 |s the maX|mum number of blocks PBKDF2 can produce to
make up the key —

How |t works

2) Next we get 2 varlables - and r |

| is the number of blocks Wlth Iength hLen Wlthln the derived key (rounded up)
_ .I = CEIL(dkLen/hLen) where CEIL is a cerhng functlon 5y - .

and ris is the Iength of the Iast block |n bytes '.
r = dkLen - (I- 1)*hLen i |

These two help W|th determlnrng how many blocks are needed to reach the ool e
length (1) and for computing the necessary paddlng S|ze for. the Iast block (|f |ts
length is not a multlple of hLen e = ~ i

How |t works

3) Next PBKDF2 applles a funotlon F (e} compute each hLen block T of the final
key.. " e
The funotlon F takes |n the password P, salt S, |terat|on count c, and block index i

. Meaning, block T 3 will be computed with- F(PS C 3) and block T | with
F(PSCI) | R e

How it works

The functlon F |tself IS executed for each bIock c-number of tlmes each time .
producmg U <X WhICh goes from U 1to. U ey ,

.On the flrst |terat|on (when computing U_ 1) the previously determined PRF takes
in P, S, and the index: of correspondlng bIock i (taklng onIy the flrst four most
significant bytes of it). - : ~ :

The password P | is concatenated W|th Salt S and counter | before belng fed |nto |
the PRF. : . i

How |t works

On each Concurrent |terat|on password Pis concatenated with the output of the
previous round of PRF,(l.e.; to co,mpute U 2, PRF WI|| use P and U 1). :

This is repeated unt|I we compute U c, after WhICh each of computed U X |s

 XOR’ed with other U_x within the same block.
In other words, T 2 = F(PS c2) U 1 XOR U 2 XOR XOR U C

How |t works

4) FlnaIIy, after computlng all ofT X they are concatenated o
To produce the denved key (DK), all we. need IS to take the first dkLen bytes from
the result of the concatenation. . S o ‘

| Pheeadii

" EVOLUTION OF THE PBKDF2

1970s-1990s." = .. .20008 = L o7 20000 - onqg oy

Pre-KDF-& PBKDF1, ~ © * The Birth of PBKDE2. "= Widespread Adoption & Scaling lterations -~ Modern Cortext &
: St S s Seamsee o 0ol o et T o Alternatives

~Pre-KDF & PBKDF1 (1 9.7‘03,—1‘ 990s)

In the earIy era, passwords were often stored using direct hashes (MD5

SHA-1) with little or no salt, leaving systems vulnerable to dlctlonary and
~rainbow table attacks PKCS #5 v1.5 (1993) mtroduced PBKDF1, the f|rst
formal password -based derlvatlon soheme which applled a hash repeatedly to -
password and salt. However PBKDF1 was limited to. short key Iengths and
relied on weak iteration counts. This stage was about reoognlzmg the need for
systematic password hardenlng, but the tooIs Were st|II prlmltlve by today S.
standards ' = T gene | :

PBKDF1 (19703—1 9905)

, PBKDF1 (P s c, dkLen) '
i 1=Ha sh(P||S)

. 1 2= Hash (T 1)

| T C= Hash (T {c 1})

DK = To<0. dkian 1> -

The B|rth of PBKDF2 (2000)

The release of PKCS #5 v2 0 (RFC 2898) in 2000 marked the formal
|ntroduct|on of PBKDF2 It |mproved on PBKDF1)Y aIIowmg arbitrary key
~_lengths and replacmg S|mple hashing W|th HMAC as the pseudorandom

~ function. Importantly, PBKDF2 established the three pillars of modern key -
derivation: unique salts, hlgh |terat|on counts and erxrbIe key sizes. This
became the baseline recommendation for. password based enoryptlon -
_ |anuenC|ng standards like PKCS #12 and NIST gurdellnes

| ;‘WideSpread.-_‘Adoption & Scaling IteratiOns (201'Os) |

Durlng the 2010s PBKDF2 became a gIobaI standard for password hashlng
and key derrvatron powerrng WPA2 Wi-Fi, BltLocker VeraCrypt and |

= password managers Securlty gmdance such as NIST SP 800-132 (2010)

formally endorsed PBKDF2 recommendlng >128-bit salts and iteration counts
tailored to hardware capabrlltles As hardware improved, recommended

_iterations rose from thousands to hundreds of thousands. However

researchers hlghllghted a weakness PBKDF2 is CPU bound makrng it eas1er i
{e]g attackers with GPUs/ASICs to paraIIellze brute force attempts :

.
B e

‘ Mo'dern C_o n'text & ,Alte rn atives l (201 ‘5—P resent)

The Password Hashlng Competltlon (2015) accelerated |nterest in. more
robust, memory-hard KDFs like scrypt and. Argon2, which resist parallel
- cracking far better. While Argon2|d has since been standardized (RFC 9106),
PBKDF2 remains widely deployed due to its. S|mpl|c;|ty, library support, and
FIPS compliance. Modern advice (e. g., OWASP 2023) is to have iteration
counts set from hundreds of thousands to millions and migrate where - -
possible to Argon2|d for new deS|gns Today, PBKDF2 represents the -
| “compatibility anchor™: old but reliable, stilt swtable when carefully tuned, yet :
mcreasmgly supplemented by stronger next generatlon algorlthms

D

PBKDF2 vs Ralnbow TabIe

Slnce ralnbow tables contain I|sts of precomplled hash vaIues for the passwords,
deriving-a-key and using a key instead a password itself would require a-hacker
to first compute the derived value, which, while not really mitigating the thread, is
. supposed to slow the brute-force. attacks down by a certain factor ‘(depending on
‘the number of |terat|ons of. PBKDF2 and whether GPU Cluster IS, used (W|II be

discussed later on))

PBKDF2 Advantages
ltis determ_i.ni_stic and resi'st.an’t to preirnage and -‘c_olnliision attacks

It is highly customizable depending on the use case and amount of security needed,
~as the number of iterations can be easily adjusted to increase encryption and

~ decryption time (increases security, but wait times for end user are longer) or
decrease them (decreases secur|ty, but make it more usable for end user) -

Additionally, PBKDF2 IS scaIabIe as it aIIows the use of dlfferent PRF S, meanlng
that, if the old PRF becomes vulnerable, a new one can put In- |ts place Wlthout
changing the rest of the encwptlon decryptlon system

Securlty Con3|derat|ons

PBKDF2 IS a cryptographlo key der|vat|on functlon WhICh Is:based on
‘|terat|vely denvmg Hash based Message Authentlcatlon Code (HMAC)

- o tis easy to |mpIement PBKDF2 rnto many systems due to |ts :
. simplicity. - , - o : :

o It reduces the password reqwrements for general users since the|r
passwords are converted to-a fixed-size key, regardless of the]
complexity of the orlglnal password o :

o PBKDF2 is very scalable due to its ab|||ty to have varlable number of
iterations (with slower derlvatlon Ieadlng to hlgher reS|stance but

also hlgher login t|me and V|ce versa) Sl =

Seourlty Consrderatlons

-0 On the flrpsrde it does not mrtrgate mentloned attacks,
instead, it is meant to sIow them down In any of the
~above attacks, an attacker will requrre more time to
| check agalnst each mdrvrdual password '

o While PBKDF2 is CPU mtensrve is not very resistant to'h -
GPU attacks, where an attacker can compute ELEEI
‘multiple passwords srmultaneousl’y dlmrnlshrng benefrts

of usrng PBKDF2 . 0 2 .

Seourlty ConS|derat|ons

‘As NIST suggested in thelr NIST SP 800 63- 3 “the iteration
count SHOULD be as Iarge as verlflcatlon server performance

| ‘will allow, typlcally at Ieast 10 OOO |terat|ons Th|s was
| proposed in June 2017 e -

In July 2025 NIST released NIST SP 800 63- 4 Where PBKDF2 .
IS NO Ionger even mentloned as recommended functlon to use

s - :f;“,,';' &5 5
o TR .
L T T

Application
Industrv Applications of PBKDF2 Password Hashing:
e Microsoft Windows Data Protection API (DPAPI)
Keeper (for password hashing) ' : .
LastPass (for password. hashing) A
~ 1Password (for password hashing) - =~
- Enpass (for password hashing) -~
-Dashlane (for password hashing) '_ '
Bitwarden (for password hashing) -
Standard Notes (for password hashmg)
Mac.OS X Mountain Lion (for user passwords) 7
Apple’s iIOS mobile operatlng system (for protectlng user passcodes and
passwords) S - - o
WinZip (AES Encryptlon Scheme) e
e Django (web framework, as.of release 1 4)

WPAZ PSK

1 Often PBKDF2 1S used (0} create an encryptlon key from 3 deflned 5
- password .

PBKDF2 uses HMAC SHA1 (e} der|ve a Palanse Master Key(PI\/IK)
: A PSK(Pre- shared Key) |s a shared secret between two partles

|EEE 802, 11| standard deflnes WPA in W|f| pre-shared key as:
o PSK= PBKDFZ(PassPhrase ssrd s3|dLength 4096 256)
It uses AES CCMP -~ i
WPA2 relies entirely on PBKDF2 < g
It is vulnerable to offllne attacks and |acks forward secrecy -

. .
e AT .

'WPA3 mtroduces SAE.
(Simultaneous
Authentication of Equals)
WPA3 requwes interaction

- with the access paint for:

each authentication attempt
It supports forward secrecy
It uses GCMP-256

'WPA2 vs WPA3

Static keys

Dynamic keys

Dynamic keys

Dynamic keys
(unique keys,
individualized data
encryption)

64-, or 128-bit

128-bit

128-bit or 265-bit

192- and 256-bit

RC4 (Rivest Cipher
4)

RC4 (Rivest Cipher
4)

AES (Advanced
Encryption
Standard) using

CCMP (Counter
Mode with Cipher
Block Chaining
Message
Authentication
Code Protocol)

GCM (Galois-
Counter Mode)
using SAE
(Simultaneous
Authentication of
Equals)

- Bitwarden Schemes

Password storage

Bitwarden is an open source password management service |
When a user. reglsters it uses a key derivation function (PBKDF2) with

- 700,000 iteration rounds to stretch the master password with user’s ema|I
“address as a salt, using HMAC- SHA256 as its PRF

The resulting salted vaIue IS 256 blt Master key that |s stretched agarn with ;
HKDF - ‘

HMAC- based extract and expend stretched the key to 512 b|ts
Bltwarden emponees Cannot see user s password

o S
e

Bitwarden Client

Email

Key Derivation Function (KDF)

Salt: email —» Master Key — HKDF —

Payload: master password

Master Password

>

CSPRNG

A CSPRNG isa determlnlstlc
algorithm . _ 7

1. Unpredlctable (weaker than ot

indistinguishability). -
'2.Backtracking- reslstant '

~ 3.Forward-Secure: -

Bitwarden uses a CSPRNG |
(Cryptographically Secure -

Pseudorandom Number Generator),

Bitwarden generates,512-—bit‘ e
Symmetric Key (MAC: 256-bits,

Encryption Key: 256-bits) and IV-128

bits

CSPRNG

Cryptographically Secure Pseudo-
Random Number Generator

B Unpredictable

withstands
cryptanalysis; no
efficient method

can predict
future bits wit’h
better than 50%

probability

Forward-secure
adding new entropy after
a compromise reinstates

the generator’s security

Backtracking-
= resistant
past outputs
remain hidden
even if the internal
state is
compromised

Bltwarden Schemes

T The Symmetrlc Key asa payload is encrypted W|th AES-256 bit encryption
using the Stretched Master Key and In|t|aI|zat|on Vector producrng the
»protected Symmetnc Key -

. ,A Master Password Hash is: generated usmg PBKDF- SHA256 wrth a
- payload of the Master Key and wrth a saIt of the master password |

The Protected Symmetnc key and Password Hash are sent to the Bltwarden "
Sen/er vra generated asymmetrlc encryptlon RSA Key parr

The Master Password Hash is used for authent1cat|on o

3 . "%"" 5 2%
AR
i

Bitwarden does not keep the master password ltself stored IocaIIy or
in-memory on-the Bitwarden cIrent : &

Bitwarden Client

Cryptographically Se

Number Gene

Key Derivation Function (KDF

)

: ! Generated Symmetric Key
~ Salt ail address —» Master Key — H F — 2 4 = 5 d

E’:l io(::j]érl:lz;i:gb):ssword Rl ENeIYPROn Key: 250 otts
) dpdpct =k MAC Key: 256 bits
= Stretched M r Key
Key Derivation Function (KDF) AES-256 bit Encryption
Master Key —»| Payload: master key IV: initialization vector
Master Password Salt: master password
T

—* Payload: symmetric key
Key: Stretched Master Key
'

Protected Symmetric Key

-! ps://
Bitwarden Cloud

Bitwarden KMS - Data Protection Key - AES-256 bit Encryption

— —
r Password Hash Protected Symmetric Key
Database w/ Transparent Data Encryption (TDE)

’assword Hash

Protected Symme

tric Key

FlnaIIy, the Stretch Master key and Protected Symmetric key (AES- 256) are used
to decrypt vault items (usernames and passwords) |

Bitwarden Client

Key Derivation Function (KDF
—= Salt: email address
Payload: master password

Key: Stretched Master Key
Key Derivation Function (KDF) Cipher String: Protected
—| Payload: master key Symmetric Key

Salt: master password
6 Cipher String”
otected Symmetric Key

Bitwarden Cloud

v/ Transparent Data Encryption (TDE)

(1) Acritical vulnerability lead to a lot of users losing their‘credentials (LastPaSS data
breach). In the past, it used 100,100 iterations, well below OWASP '
recommendation of 310 OOO ‘Worst of aII some accounts onIy had 5,000 iterations.
(Before) ‘ - - ~

(2) This shows the maximumtime to . TIME IS TAKES A HACKER TO BRUTE

crack PBKDF2 with SHA:256 US'”Q e ~ (2) FORCE YOUR LastPass+-| PASSWORD
GPUS (RTX 4090) v = : : * Following the 2022 data breach

Hardware: 12 x RTX 4090 | Password hash: PBKDF2-SHA256 * 600,000 =

Number of e o Upper and Numbers, Upper Numbers, Upper

ch Numbers Only tekors Lowercase and Lowercase and Lowercase
aracters Letters Letters Letters, Symbols
Instantly 3 secs 44 secs 1 min 2 mins
1sec 1 min 38 mins 2 hours 3 hours
6 secs 31 mins 1 day 4 days 1 weeks

8 months

2 months

13 hours

1 min

10 mins 2 weeks

2 hours 1 year

17 hours

7 days

_ 201bn years 2tn years 12tn years

T otoyears
_ _ _ 10tn years 146tn years 904tn years
— _ _ 544tn years 9qd years 63qd years
— _ 215bn years 28qd years 562qd years 4qn years
— _ 5tn years 1qn years 34qn years 310gn years

38bn years 184bn years

Bitwarden latest options uses Argon2id -
- Use a Password Strength testing tool
. (https: /[bitwarden.com/password-strength/)
Use MFA or better passkey (biometric or FIDO2)
Replace PBKDF2 with Argon2id
The downside of increasing the |terat|ons for PBKDF2 or KDF |terat|ons for

: Argon2|d is a slower decryptlon

Higher KDF |terat|onscan help protect your master password from being brute forced by an attacker.

For older devices, setting your KDF too high may lead to performance issues. Increase the value in small increments and test

your devices.

~ KDF algorithm ® (required) —————————————— — KDF iterations (required
‘ Argon2id 10

— KDF memory (MB) (required) —m——————————— ~ KDF parallelism (require
‘ 1024 16

Change KDF

https://bitwarden.com/password-strength/

~ Altern atives to PBKF2
ConS|der|ng PBKDF2 S weakness to GPU based attacks, the I|ker questlon that
comes to mlnd is whether there are any better aIternatlves’? 4 :

Scrypt I PBKDF2
A_

Bcerypt Argon2 .

AIternatlves to PBKF2

The f|rst aIte_rnatlve caIIed Bcrypt was mtroduced back in 1999 used |n PHP and
OpenBSD ’ : _ R

- Uses some protectlon agamst GPU attacks but has flxed memory usage and is
not safe in Iong term - e

* .

- Altern atives to PBKF2
Another aIternatlve IS caIIed Scrypt It was introduced in 2009 and standardlzed

in 2016 as RFC 7914 It aIIows for adjustment of both t|me and memory- based
parameters : : -

However it has an |ssue caIIed t|me memory tradeoff due to which, when _
Scrypt performs more computatlons (e.g. more time), it uses less memory. With
right parameters, it is possible to achieve constant memory usage maklng it -
- vulnerable to the same issue that Borypt and PBKDF2 have

AIternatlves to PBKF2

Wlth these concerns in m|nd there was an open competltlon in2013 called

Password Hashlng Competltlon As a result in 2015 the new hashing functlon
caIIed Argon2 was created : »

It allows to separately set up t|me memory costs as weII as paraIIellsm degree _
making it secure agalnst GPU- based attacks -

. Argon2 WER standardlzed in RFC 9106 0} 2021 i

Conclusmn

Desplte the ava|Iab|I|ty of more secure and modern aIternatlves such as
Argon2, PBKDF2 is still widely used in many critical systems including
WPA/WPA2 encryptlon GRUBZ Winrar Lmux Unlfled Key Setup, VeraCrypt

- - etc.

It will take time until PBKDF2 will become obsolete, and until then it is. |mportant |
to understand its weaknesses and advantages to |dent|fy Whether its usage is -
- acceptable or WI|| it compromlse the system il e

[1] B. Kaliski, A. Rusch and K. Morlarty, PKCS #5: Password-based Cryptography Spec1ﬁcat10n
verswn 2.1,-Jan. 2017. doi: 10 17487/rfc8018 ' .

[2] P. A Grass1 et al. Dlgltal Identlty Guldellnes Authentlcatwn and llfecycle management Jun.
; 2017 doi:10. 6028/mst sp- 800 63b :

13] D. Temoshok et al Dlgltal Identlty Guldelmes Authentlcatlon and Authentlcator Management
Jul. 2025. doi:10.6028/nist.sp. 800-63b 4

[4] A. Vlscontl, O. Mosnaéek, M. BroZ, and V. Matyas, “Examining PBKDF2 security margin—case
study of Luks,” Journal of Informatlon Securlty and Appllcatlons, vol 46, pp 296—306 Jun 2019
doi:10. 1016/] Jlsa 2019.03.016 ‘

[5] “Password hashing competrtlon,’; Password Hashing Competition:--: .'.
https://www.password-hashing.net/ (accessed Sep. 28,_2,,02'5).',"_ A T

References (contd.)
[6] A. Biryukov, D. Dlnu, D. Khovratov1ch and S. Josefsson, “RFC 9106 ” RFC 9106: Argon2

Memory-Hard Function for Password Hashmg and Proof-of-Work Appllcatlons, 3
https /Iwww.rfe- edltor org/rfc/rfc9106 (accessed Sep 28, 2025) :

7 H. Chei and S. C Seo, “Optlmlzatlon of PBKDFZ using HMAC sha2 and HMAC- LSH families
-in CPU env1ronment ” [EEE Access, vol. 9 pp- 40165—40177 2021. d01.10.IlO9/access.2021.3065082

[8] B. Kaliski, “PKCS #5 Password based cryptography speclﬁcatlon vers1on 2 0,” RFC Edltor,
https://www.rfc- edltor org/rfc/rfc2898 html (accessed Sep 28 2025)

[9] N. Vettivel, “Securmg passwords using hashlng,” Medlum, ; o)
https://nishothan-17.medium. com/securmg passwords-us1ng-hashmg—8ce558e14b6d (accessed Sep
28, 2025) z ; : : :

e

[10] S.N akov, “Mac and.key derlvatlon,” Practlcal Cryptography for Developers,
https://cryptobook. nakov com/mac-and- key-derlvatlon (accessed Sep 28 2025)

References (contd.)
[11] D. Chatterjee,. “Cryptographlcally secure pseudo-random number Introduction,” Medlum,

https: //medium. com/@cozy03/crypt0graphlcally-secure-pseudo random- number—mtroductlon Sbo6f
19d20ae7 (accessed Sep 28 2025) : :

C[12] Bltwarden, “Bltwarden Securlty whltepaper,” Bltwarden, :
- https://bitwarden. com/help/bltwarden-securlty-whlte-paper/#tab onb0ardmg-2VYGcnwamYH4J
977Xd38H (accessed Sep. 28, 2025)

[13] Arjen et al., “Bitwarden design flaw: Server s1de 1terat10ns,” Almost Secure, .
https: //palant mf0/2023/01/23/b1twarden-des1gn-ﬂaw-server-s1de~1terat10ns/ (accessed Sep 28 2025).

[14] C. Neskey, “Exammmg the LastPass breach through our passwurd table,” Hive: Systems,

>

https://www.hivesystems. com/blog/exammmg-the-lastpass-breach through-our-password—table

(accessed Sep. 28, 2025)

