
ISEC- 601

Teaching Aide
Password-Based Key Derivation
Function 2

PBKDF2 Building blocks & How it’s Used
History

HMAC

How it works (Key Derivation, Salting, Iterations)

Development / how pbkdf2 progressed- Cooper

Security Assessment

Main Application

Future / New Standard / Alternatives

Conclusion

History

- Most users select password in low
randomness (password, 123456)

- This make the number of attempt an
attacker need to try fairly low

- The higher entropy password are more
difficult to brute force

History
- Top 20 passwords of LinkedIn users in 2012

- Standard hashing ineffective algorithms such as
MD5 os SHA-1 are fast but low entropy

History
Imagine you need to transmit data over insecure channel. What would you
do?
Encrypt it using a password, right?
Most people would do that.
Most people would also choose a short, easy-to-remember password.
This makes it for a huge vulnerability to brute-force attacks

Is there anything that would help us mitigate that?

History
One way to do this is to encrypt data with a Key that was derived from a
Password. Here is where Key Derivation Functions (KDF) come in handy.

The first standardized KDF was Password-Based KDF 2 (PBKDF2).
Introduced in 2000 by RSA Laboratories, in RFC: 2898

Before it, there was a PBKDF1, which didn’t produce large enough keys, and
thus, was vulnerable.

Authenticity and Integrity
● HMAC is a type of MAC
● Using the Password as HMAC

key establish Authenticity
● HMAC ensures Integrity

- How can we identify who is
behind a device ?
(Authenticity)

- How can we ensure that the
message was not altered
during transmission?
(Integrity)

HMAC
- MACs are called “cryptographic checksums” (Integrity)
- [m || h(m)] -> hashing the message alone is insecure
- If only the sender and receiver know the key we can assume

authenticity
- Tag = [M || h(k || m)] k is shared by the sender and receiver
- MAC is still vulnerable to extension attacks
- HMAC(K, M) = H((K' ⊕ opad) ∥ H((K' ⊕ ipad) ∥ M))
- Ipad 0x36 constant and opad 0x5c with long hamming distance
- only someone with the secret key can generate or verify the

HMAC.
-
-

HMAC as the PRF
● HMAC combines a secret key with a cryptographic hash function (SHA-512)

● HMAC is often used as a Pseudo-Random Function

● It is collision-resistant

● It produces outputs of predictable fixed size

Short keys are
more vulnerable to
brute-force attack.

How it works
As stated by IETF: “PBKDF2 applies a pseudorandom function to derive keys”

PBKDF2 allows various pseudorandom functions to be included (PRF)
The length of an output of such a function is denoted as hLen (measured in bytes). It
is also a length of each individual block that will make up the final key.

PBKDF2 function takes in four variables:
● P - Password from which the key is derived (string)
● S - salt (string)
● c - iteration count (integer)
● dkLen - intended length of the derived key (integer, bytes)

And outputs DK (derived key)

Let’s take a closer look!

How it works
1) First, PBKDF2 takes hLen*(2^32-1) and compares it to dkLen.

If DkLen is bigger, PBKDF2 will return an error

This means that 2^32 is the maximum number of blocks PBKDF2 can produce to
make up the key.

How it works
2) Next, we get 2 variables - l and r

l is the number of blocks with length hLen within the derived key (rounded up)
l = CEIL(dkLen/hLen), where CEIL is a ceiling function

and r is is the length of the last block in bytes
 r = dkLen - (l-1)*hLen

These two help with determining how many blocks are needed to reach the key
length (l) and for computing the necessary padding size for the last block (if its
length is not a multiple of hLen

How it works
3) Next, PBKDF2 applies a function F to compute each hLen-block T of the final
key.
The function F takes in the password P, salt S, iteration count c, and block index i
Meaning, block T_3 will be computed with F(P,S,c,3), and block T_l with
F(P,S,c,l)

How it works
The function F itself is executed for each block c-number of times, each time
producing U_x, which goes from U_1 to U_c.

On the first iteration (when computing U_1), the previously determined PRF takes
in P, S, and the index of corresponding block i (taking only the first four most
significant bytes of it).

The password P is concatenated with salt S and counter i before being fed into
the PRF.

How it works
On each concurrent iteration password P is concatenated with the output of the
previous round of PRF (i.e. to compute U_2, PRF will use P and U_1).

This is repeated until we compute U_c, after which, each of computed U_x is
XOR’ed with other U_x within the same block.
In other words, T_2 = F(P,S,c,2)=U_1 XOR U_2 XOR … XOR U_C

How it works
 4) Finally, after computing all of T_x, they are concatenated.
To produce the derived key (DK), all we need is to take the first dkLen bytes from
the result of the concatenation.

EVOLUTION OF THE PBKDF2

1970s-1990s 2000s 2010s 2015s-Now

Pre-KDF & PBKDF1 The Birth of PBKDF2 Widespread Adoption & Scaling Iterations Modern Context &
Alternatives

 Pre-KDF & PBKDF1 (1970s–1990s)

In the early era, passwords were often stored using direct hashes (MD5,
SHA-1) with little or no salt, leaving systems vulnerable to dictionary and
rainbow table attacks. PKCS #5 v1.5 (1993) introduced PBKDF1, the first
formal password-based derivation scheme, which applied a hash repeatedly to
password and salt. However, PBKDF1 was limited to short key lengths and
relied on weak iteration counts. This stage was about recognizing the need for
systematic password hardening, but the tools were still primitive by today’s
standards.

 PBKDF1 (1970s–1990s)

PBKDF1 (P, S, c, dkLen)

T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
 ...
 T_c = Hash (T_{c-1}) ,

DK = Tc<0..dkLen-1>

 The Birth of PBKDF2 (2000)

The release of PKCS #5 v2.0 (RFC 2898) in 2000 marked the formal
introduction of PBKDF2. It improved on PBKDF1 by allowing arbitrary key
lengths and replacing simple hashing with HMAC as the pseudorandom
function. Importantly, PBKDF2 established the three pillars of modern key
derivation: unique salts, high iteration counts, and flexible key sizes. This
became the baseline recommendation for password-based encryption,
influencing standards like PKCS #12 and NIST guidelines.

Widespread Adoption & Scaling Iterations (2010s)

During the 2010s, PBKDF2 became a global standard for password hashing
and key derivation, powering WPA2 Wi-Fi, BitLocker, VeraCrypt, and
password managers. Security guidance, such as NIST SP 800-132 (2010),
formally endorsed PBKDF2, recommending ≥128-bit salts and iteration counts
tailored to hardware capabilities. As hardware improved, recommended
iterations rose from thousands to hundreds of thousands. However,
researchers highlighted a weakness: PBKDF2 is CPU-bound, making it easier
for attackers with GPUs/ASICs to parallelize brute-force attempts.

Modern Context & Alternatives (2015–Present)

The Password Hashing Competition (2015) accelerated interest in more
robust, memory-hard KDFs like scrypt and Argon2, which resist parallel
cracking far better. While Argon2id has since been standardized (RFC 9106),
PBKDF2 remains widely deployed due to its simplicity, library support, and
FIPS compliance. Modern advice (e.g., OWASP 2023) is to have iteration
counts set from hundreds of thousands to millions and migrate where
possible to Argon2id for new designs. Today, PBKDF2 represents the
“compatibility anchor”: old but reliable, still suitable when carefully tuned, yet
increasingly supplemented by stronger next-generation algorithms.

PBKDF2 vs Rainbow Table
Since rainbow tables contain lists of precompiled hash values for the passwords,
deriving a key and using a key instead a password itself would require a hacker
to first compute the derived value, which, while not really mitigating the thread, is
supposed to slow the brute-force attacks down by a certain factor (depending on
the number of iterations of PBKDF2 and whether GPU cluster is used (will be
discussed later on))

PBKDF2 Advantages
It is deterministic and resistant to preimage and collision attacks

It is highly customizable depending on the use case and amount of security needed,
as the number of iterations can be easily adjusted to increase encryption and
decryption time (increases security, but wait times for end user are longer) or
decrease them (decreases security, but make it more usable for end user)

Additionally, PBKDF2 is scalable as it allows the use of different PRF’s, meaning
that, if the old PRF becomes vulnerable, a new one can put in its place without
changing the rest of the encryption-decryption system

Security Considerations
PBKDF2 is a cryptographic key derivation function, which is based on
iteratively deriving Hash-based Message Authentication Code (HMAC)

○ It is easy to implement PBKDF2 into many systems due to its
simplicity

○ It reduces the password requirements for general users since their
passwords are converted to a fixed-size key, regardless of the
complexity of the original password

○ PBKDF2 is very scalable due to its ability to have variable number of
iterations (with slower derivation leading to higher resistance, but
also higher login time, and vice versa)

○ On the flipside, it does not mitigate mentioned attacks,
instead, it is meant to slow them down. In any of the
above attacks, an attacker will require more time to
check against each individual password

○ While PBKDF2 is CPU-intensive, is not very resistant to
GPU attacks, where an attacker can compute against
multiple passwords simultaneously, diminishing benefits
of using PBKDF2

Security Considerations

Security Considerations
As NIST suggested in their NIST SP 800-63-3, “the iteration
count SHOULD be as large as verification server performance
will allow, typically at least 10,000 iterations”. This was
proposed in June 2017.

In July 2025 NIST released NIST SP 800-63-4, where PBKDF2
is no longer even mentioned as recommended function to use.

Application
Industry Applications of PBKDF2 Password Hashing:
● Microsoft Windows Data Protection API (DPAPI)
● Keeper (for password hashing)
● LastPass (for password hashing)
● 1Password (for password hashing)
● Enpass (for password hashing)
● Dashlane (for password hashing)
● Bitwarden (for password hashing)
● Standard Notes (for password hashing)
● Mac OS X Mountain Lion (for user passwords)
● Apple’s iOS mobile operating system (for protecting user passcodes and

passwords)
● WinZip (AES Encryption Scheme)
● Django (web framework, as of release 1.4)

WPA2-PSK
● Often PBKDF2 is used to create an encryption key from a defined

password
● PBKDF2 uses HMAC-SHA1 to derive a Pairwise Master Key(PMK)
● A PSK(Pre-shared Key) is a shared secret between two parties

● IEEE 802.11i standard defines WPA in Wifi pre-shared key as:
○ PSK = PBKDF2(PassPhrase, ssid, ssidLength, 4096, 256)

● It uses AES CCMP
● WPA2 relies entirely on PBKDF2
● It is vulnerable to offline attacks and lacks forward secrecy

WPA2 vs WPA3
● WPA3 introduces SAE

(Simultaneous
Authentication of Equals)

● WPA3 requires interaction
with the access point for
each authentication attempt

● It supports forward secrecy
● It uses GCMP-256

Bitwarden Schemes
Password storage:
● Bitwarden is an open source password management service
● When a user registers, it uses a key derivation function (PBKDF2) with

700,000 iteration rounds to stretch the master password with user’s email
address as a salt, using HMAC-SHA256 as its PRF

● The resulting salted value is 256-bit Master key that is stretched again with
HKDF

● HMAC-based extract and expend stretched the key to 512 bits
● Bitwarden employees cannot see user’s password

CSPRNG
A CSPRNG is a deterministic
algorithm
1.Unpredictable (weaker than
indistinguishability)
2.Backtracking-resistant
3.Forward-Secure

Bitwarden uses a CSPRNG
(Cryptographically Secure
Pseudorandom Number Generator)

Bitwarden generates 512-bit
Symmetric Key (MAC: 256-bits,
Encryption Key: 256-bits) and IV-128
bits

Bitwarden Schemes
● The Symmetric Key as a payload is encrypted with AES-256 bit encryption

using the Stretched Master Key and Initialization Vector producing the
protected Symmetric Key

● A Master Password Hash is generated using PBKDF-SHA256 with a
payload of the Master Key and with a salt of the master password

● The Protected Symmetric key and Password Hash are sent to the Bitwarden
Server via generated asymmetric encryption RSA Key pair

● The Master Password Hash is used for authentication

● Bitwarden does not keep the master password itself stored locally or
in-memory on the Bitwarden client

Finally, the Stretch Master key and Protected Symmetric key (AES-256) are used
to decrypt vault items (usernames and passwords)

(1) A critical vulnerability lead to a lot of users losing their credentials (LastPass data
breach). In the past, it used 100,100 iterations, well below OWASP
recommendation of 310,000. Worst of all, some accounts only had 5,000 iterations.
(Before)

(2)

(1)

(2) This shows the maximum time to
crack PBKDF2 with SHA-256 using 12
GPUs (RTX 4090)

● Bitwarden latest options uses Argon2id
● Use a Password Strength testing tool

(https://bitwarden.com/password-strength/)
● Use MFA or better passkey (biometric or FIDO2)
● Replace PBKDF2 with Argon2id
● The downside of increasing the iterations for PBKDF2 or KDF iterations for

Argon2id is a slower decryption

https://bitwarden.com/password-strength/

Alternatives to PBKF2
Considering PBKDF2’s weakness to GPU-based attacks, the likely question that
comes to mind is whether there are any better alternatives?

The answer is Yes!

Alternatives to PBKF2
The first alternative called Bcrypt was introduced back in 1999 used in PHP and
OpenBSD.

Uses some protection against GPU attacks, but has fixed memory usage and is
not safe in long term

Alternatives to PBKF2
Another alternative is called Scrypt. It was introduced in 2009 and standardized
in 2016 as RFC 7914. It allows for adjustment of both, time- and memory-based
parameters.

However, it has an issue called time-memory tradeoff, due to which, when
Scrypt performs more computations (e.g. more time), it uses less memory. With
right parameters, it is possible to achieve constant memory usage, making it
vulnerable to the same issue that Bcrypt and PBKDF2 have.

Alternatives to PBKF2
With these concerns in mind, there was an open competition in 2013 called
“Password Hashing Competition”. As a result, in 2015, the new hashing function
called Argon2 was created.

It allows to separately set up time, memory costs, as well as parallelism degree,
making it secure against GPU-based attacks.

Argon2 was standardized in RFC 9106 in 2021.

Conclusion
Despite the availability of more secure and modern alternatives, such as
Argon2, PBKDF2 is still widely used in many critical systems, including
WPA/WPA2 encryption, GRUB2, Winrar, Linux Unified Key Setup, VeraCrypt,
etc.

It will take time until PBKDF2 will become obsolete, and until then it is important
to understand its weaknesses and advantages to identify whether its usage is
acceptable or will it compromise the system.

References
[1] B. Kaliski, A. Rusch, and K. Moriarty, PKCS #5: Password-based Cryptography Specification
version 2.1, Jan. 2017. doi:10.17487/rfc8018

[2] P. A. Grassi et al., Digital Identity Guidelines: Authentication and lifecycle management, Jun.
2017. doi:10.6028/nist.sp.800-63b

[3] D. Temoshok et al., Digital Identity Guidelines:Authentication and Authenticator Management,
Jul. 2025. doi:10.6028/nist.sp.800-63b-4

[4] A. Visconti, O. Mosnáček, M. Brož, and V. Matyáš, “Examining PBKDF2 security margin—case
study of Luks,” Journal of Information Security and Applications, vol. 46, pp. 296–306, Jun. 2019.
doi:10.1016/j.jisa.2019.03.016

[5] “Password hashing competition,” Password Hashing Competition,
https://www.password-hashing.net/ (accessed Sep. 28, 2025).

References (contd.)
[6] A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “RFC 9106,” RFC 9106: Argon2
Memory-Hard Function for Password Hashing and Proof-of-Work Applications,
https://www.rfc-editor.org/rfc/rfc9106 (accessed Sep. 28, 2025).

[7] H. Choi and S. C. Seo, “Optimization of PBKDF2 using HMAC-sha2 and HMAC-LSH families
in CPU environment,” IEEE Access, vol. 9, pp. 40165–40177, 2021. doi:10.1109/access.2021.3065082

[8] B. Kaliski, “PKCS #5: Password-based cryptography specification version 2.0,” RFC Editor,
https://www.rfc-editor.org/rfc/rfc2898.html (accessed Sep. 28, 2025).

[9] N. Vettivel, “Securing passwords using hashing,” Medium,
https://nishothan-17.medium.com/securing-passwords-using-hashing-8ce558e14b6d (accessed Sep.
28, 2025).

[10] S. Nakov, “Mac and key derivation,” Practical Cryptography for Developers,
https://cryptobook.nakov.com/mac-and-key-derivation (accessed Sep. 28, 2025).

References (contd.)
[11] D. Chatterjee, “Cryptographically secure pseudo-random number: Introduction,” Medium,
https://medium.com/@cozy03/cryptographically-secure-pseudo-random-number-introduction-5b6f
19d20ae7 (accessed Sep. 28, 2025).

[12] Bitwarden, “Bitwarden Security whitepaper,” Bitwarden,
https://bitwarden.com/help/bitwarden-security-white-paper/#tab-onboarding-2VYGcnxLwmYH4J
977Xd38H (accessed Sep. 28, 2025).

[13] Arjen et al., “Bitwarden design flaw: Server side iterations,” Almost Secure,
https://palant.info/2023/01/23/bitwarden-design-flaw-server-side-iterations/ (accessed Sep. 28, 2025).

[14] C. Neskey, “Examining the LastPass breach through our password table,” Hive Systems,
https://www.hivesystems.com/blog/examining-the-lastpass-breach-through-our-password-table
(accessed Sep. 28, 2025).

