

Regina, Saskatchewan, Canada 4 – 6 February, 2020

Risk Based Inspection Data Integration for Assessing Microbiologically Influenced Corrosion in the Oil and Gas Industry

Andre Abilio, University of Alberta Rick B. Eckert, DNV GL Torben Lund Skovhus, VIA University College John Wolodko, University of Alberta Agenda

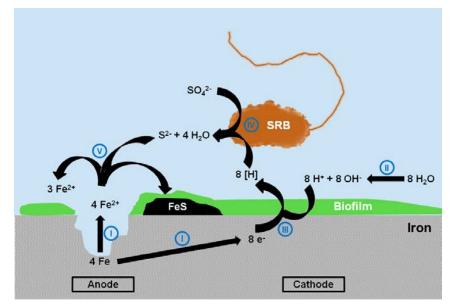
1. Background

2. Previous work

3. Current Model3.1. Screening Assessment3.2. Ranking Tool

4. Integration process

5. Dataset for implementation


6. Conclusion

Background

What is MIC?

MIC: Microbiologically Influenced Corrosion

- According to NACE, MIC is "corrosion affected by the presence and/or activity of microorganisms in biofilms on the surface of the corroding material"
- Presence of microorganisms alone does not necessarily mean MIC is a threat
- Three layers of requirement must be met:
 - Microbial ABUNDANCE
 - Microbial ACTIVITY
 - Microbial DIVERSITY

Scheme of iron corrosion by SRB based on reactions as suggested by the cathodic depolarization theory. I, iron dissolution; II, water dissociation; III, proton reduction; IV, bacterial sulfate reduction and V, sulfide precipitation. Source: Mechanisms of Microbiologically Influenced Corrosion: A Review World Applied Sciences Journal 17 (4): 524-531, 2012

The role of microorganisms in the Oil and Gas Industry

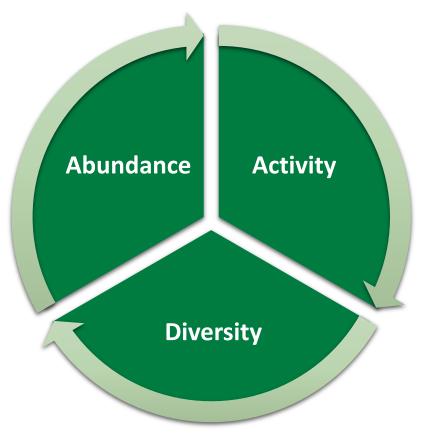
Negative Positive 11-Oil pipline internal MIC & fouling 21-Potable water MIC & pathogens 1- Water Injection System fouling/MIC 2-Down-hole MIC (mesophiles) 12-Onshore crude oil tank MIC 22- Heat exchanger MIC & fouling 13- Refinery MIC 23- Desalination/RO plant fouling & MIC 3- Reservoir souring & plugging 33-Bioremediation - land farming 14- Crude oil cargo tank MIC 24- Marine growth - steel MIC Down-hole MIC (thermophiles) 34-Biodesulfurization 15- Diesel tank contamination/spoilage 25- Marine growth - concrete spalling 5- Production system MIC, H₂S, Oil in Water 35- Competitive microbes - control MIC/souring 16- Ship fuel fouling, spoilage & MIC 26- Discarded drill mud - MIC/environmental 6- Sub-sea manifold MIC 36-Biosensors 17-Lubricating & Hydraulic oil contamination 27- Drilling/workover fluids contamination 7-Water flowline internal MIC & fouling 37-Biorefining and upgrading oil 18- Helicopter/aircraft fuel contamination 28-NORM concentration by SRB 8- Aquifer supply-plugging; ESP MIC 38- Microbial prospecting 9- Produced water injection well plugging 19-Water filled steel legs & hydrotest MIC 29-Production chemicals spoilage 39-Bacterial production of novel oilfield chemicals 20- Firewater system MIC & fouling 10- Crude oil storage H₂5, H₂5O₄ 30-Coatings biodeterioration 40- Control by specific pathogens Heat Helicopter **Downstream** Process Exchanger **Oil Production** Desalination Platform Plant Onshore Crude Oil Storage Tanks **Oil Exploration** Production **Crude Oil Line** Drilling Rig Water Injection Plant Land Farm Concrete Legs Steel Legs Sea Water Pipeline and the second s Aquifer Water Supply 5 Large Oil Reservoir Produced Water **Disposal Zone** Source: Petroleum Microbiology Oil Reservoi Impact of Microbes on the Oil Industry

What is RBI?

RBI: Risk Based Inspection

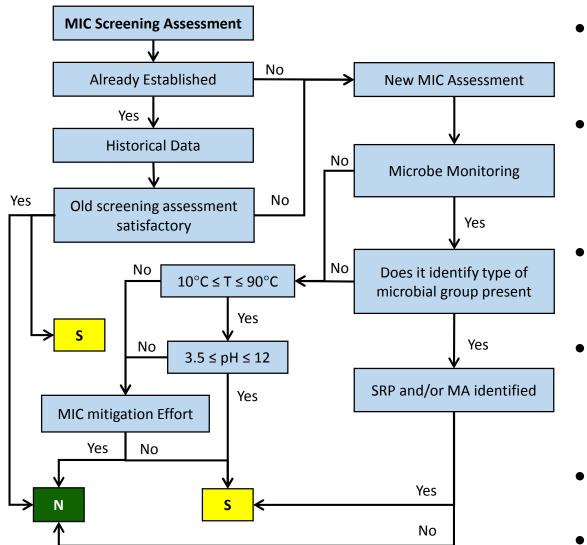
- RBI is a decision-making technique that identifies, assesses and maps industrial risks
- Risk (of failure) = likelihood of failure (LOF) x consequence of failure (COF)
- As MIC is a degradation mechanism, the model works within the boundaries of LOF estimation
- We 'circuitize' in order to prioritize
- Semi-quantitative approach is taken

Inspection, Risk-Based. "API Recommended Practice 580." *American Petroleum Institute* (2018). GL, DNV. "DNV GL-RP-G101: risk based inspection of offshore topsides static mechanical equipment." (2017).


Risk = *Likelihood* * *Consequence*

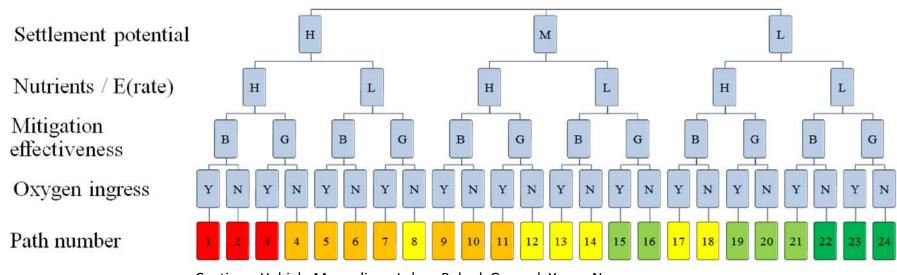
What is MMM?

MMM: Molecular Microbiological Methods

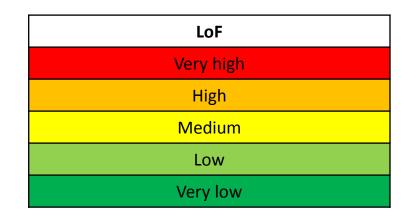

- Abundance
 Quantitative Polymerase Chain Reaction (qPCR)
- Activity
 Adenosine Triphosphate assay (ATP)
- Diversity
 Next Generation Sequencing (NGS)
- Output reliable results as culture independent methods
 - Do not depend on selective media
 - Can account for a wider spectrum of microorganisms

Skovhus, Torben Lund, Dennis Enning, and Jason S. Lee. *Microbiologically influenced corrosion in the upstream oil and gas industry*. CRC press, 2017.

Previous Work


Andersen's Model, 2014 – Screening Assessment

- <u>Corrosion circuit</u> is defined and assessed
- Temperature, pH, fluid chemical characteristics, fluid dynamics dependent
- Use of data already gathered
- Focus effort into components at higher threat of MIC
- N: Negligible LoF
- S: Significant LoF


Skovhus, Torben Lund, Erlend Stokstad Andersen, and Elizabeth Hillier. "Management of microbiologically influenced corrosion in risk-based inspection analysis." SPE Production & Operations 33.01 (2018): 121-130.

Andersen's Model, 2014 – Ranking Tool

Captions: H: high, M: medium, L: low, B: bad, G: good, Y: yes, N: no.

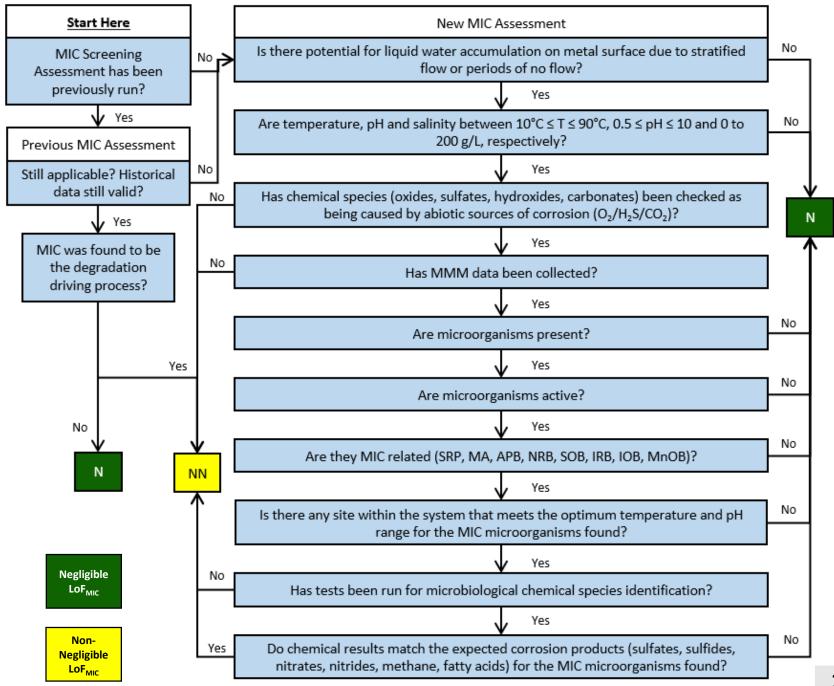
- Corrosion circuit is qualitatively ranked
- Likelihood prioritization paths
- 5 MIC drivers are taken into consideration
- The asset is ranked within 5 LOF categories

Skovhus, Torben Lund, Erlend Stokstad Andersen, and Elizabeth Hillier. "Management of microbiologically influenced corrosion in riskbased inspection analysis." *SPE Production & Operations* 33.01 (2018): 121-130.

Current Model

Model Rationale

What the present model aims to accomplish?


Drive where inspections will be carried out due to the threat of MIC at assessed corrosion circuits based on the absence or presence of historical and current data

The driving question:

IF THE PARAMETER HAS A LARGER VALUE IS MORE LIKELY TO BE MIC OR LESS LIKELY TO BE MIC?

Model Rationale

- 2 step approach
 - Screening Assessment
 - Narrows down where inspections will be conducted
 - "Do we have a problem here?"
 - Ranking Tool
 - Determines prioritization level
 - "How big of a problem is that?"
- Three levels of MIC influence:
 - Screening Assessment \rightarrow Discarders
 - Ranking Tool \rightarrow Indicators 'Red flags'
 - Ranking Tool → Enhancers

Ranking Tool

- MIC degradation drivers are divided into 6 information groups
 - 1. Settlement potential
 - 2. Operational
 - 3. Microbiological
 - 4. Chemistry
 - 5. Metallurgical
 - 6. Degradation
- Their influence over MIC is integrated by connecting interplaying parameters
- A microbiological consortia (presence of multiple microbiological functional groups, MFG) indicates a higher threat of MIC
 - SRP: Sulfate reducing prokaryotes (both bacteria and archaea)
 - SOB: Sulfate oxidizing bacteria
 - MA: Methanogens archaea
 - NRB: Sulfate reducing bacteria
 - APB: Acid producing bacteria
 - IRB: Iron reducing bacteria
 - IOB, MnOB: iron and manganese oxidizing bacteria

Chemical and Microbiological Integration

- Presence of total iron in concert with <u>iron reducing bacteria</u> (IRB);
- Presence of sulfate related species and also <u>sulfate reducing prokaryotes</u> (SRP = sulfate reducing bacteria, SRB + sulfate reducing archaea, SRA)
- Presence of nitrogen related species and <u>nitrate reducing bacteria</u> (NRB)
- In concert with ATP assay results
- Indicates presence, activity and microbiological diversity
- These three levels of evidence properly integrated allows reliable assessment of the threat of MIC and may assist assessors on where focusing time and effort

6 Information Groups

Settlement Potential

- Presence of deadlegs, bypasses
- Operating time with no flow
- Flow regime
- Water cut

Operational

- pH
- Temperature

Microbiological

- Abundance
- Activity
- Diversity
- Sample type

Chemistry content

- Hydrogen sulfide
- Carbon dioxide
- Oxygen
- Total iron
- Sulphate
- Nitrate
- Volatile fatty acids
- Chloride

Degradation

- Presence of deposits
- Corrosion morphology
- Corrosion rate

Metallurgical

• Material type

Ranking Tool Integration

Settlement	SETTLEMENT POTENTIAL SCORE	5		
Settlement	Presence of deadlegs, bypasses	YES / NO		
Settlement	Operating time with no flow	days / year		
Settlement	Flow regime	Stradified, Laminar, Turbulent		
Settlement	Water cut (%)	20		
Metallurgical	METALLURGICAL SCORE	9		
Metallurgical	Material type	Carbon steel, stainless steel, corrosion resistance alloy		
Operational	OPERATIONAL SCORE	Temperature (°C)	рН	
Operational	Operating Conditions	25	6.75	

- Information Groups
 - Settlement potential
 - Potential for water contact on the circuit surface
 - Metallurgical
 - Operational

Final output: a <u>semi-quantitative Total MIC Score</u> that allows relative prioritization of assets on regards to MIC

Ranking Tool Integration

Chemistry	CHEMISTRY SCORE	8
Chemistry	Gas Composition	Amount
Chemistry	O2 (ppm)	0.00
Chemistry	CO2 (ppm)	0.39
Chemistry	H2S (ppm)	0.00
Chemistry	Liquid Composition	Amount
Chemistry	Iron, total (ppm)	10.50
Chemistry	Chloride (ppm)	16144.08
Chemistry	Sulfate (ppm)	17.90
Chemistry	Nitrate (ppm)	7.56
Chemistry	Volatile fatty acids (ppm)	-
Chemistry	Solid Composition	Amount
Chemistry	Iron carbonate (weight %)	3.90
Chemistry	Iron oxide (weight %)	17.80
Chemistry	Iron hydroxide (weight %)	11.50
Chemistry	Iron sulfate (weight %)	12.00

- Chemistry information group
- Environmental conditions to integrate with microbiological data

Ranking Tool Integration

Biological	BIOLOGICAL SCORE	8	8	
Biological	Sample type	Solid (g), surface	Solid (g), surface (cm²), liquid (mL)	
Biological	Abundance - qPCR	Number	Exponent	
Biological	Abundance - qPCR, cell/mL	6.7	5	
Biological	Activity - ATP	Number	Exponent	
Biological	Activity - ATP, cell/mL	1.44	7	
Biological	Diversity - NGS	%	%	
Biological	SRP (Sulfate reducing prokaryote)	20.9	20.90%	
Biological	NRB (Nitrate reducing bacteria)	57.6	57.60%	
Biological	IRB (Iron reducing bacteria)	6.2	6.20%	
Biological	General heterotrophic	89	8%	
Degradation	DEGRADATION SCORE	7		
Degradation	Presence of deposits	YES /	YES / NO	
Degradation	Form of Corrosion	Pitting /	Pitting / Uniform	
Degradation	Corrosion rate (CR), mm/yr	0.0	0.02	
MIC	TOTAL MIC SCORE	7	Moderate	

- Information Groups
 - Biological \rightarrow Accounts for microbiological consortia
 - Degradation

- Next steps:
 - Real data testing for model calibration and validation
 - Data on regards to offshore, onshore and topsides operations
 - Tailoring for specific archetype conditions
 - Crude oil gathering systems
 - Seawater systems
 - Produced water systems
- Definition of the independent information group score weights for the overall threat of MIC

Conclusions

- A two-step model that accounts for multiple layers of evidence and incorporates RBI to assess MIC toward onshore, offshore and topside facilities in the oil and gas industry is under development
- MIC has to meet the three layers of microbiological requirements, abundance, activity, and diversity, to pose a threat
- Different layers of evidence must be integrated in order to properly assess MIC: environmental (chemical, metallurgical, operational) and biological
- It accounts for the enhancement of the threat of MIC when there is a consortia of microorganisms
- Next steps
 - Real data testing for model calibration and validation
 - Tailoring for specific archetype conditions
 - Crude oil gathering systems, seawater systems, produced water systems

Acknowledgements

Risk Based Inspection Data Integration for Assessing Microbiologically Influenced Corrosion in the Oil and Gas Industry

Thank you!

Andre de Araujo Abilio, E.I.T.

Metallurgical and Materials Engineer

+1 780 699 6087 | a.abilio@ualberta.ca | linkedIn/AAAbilio