An Operators View on Approaches to MIC Threat and Failure Assessment

Presentation by: Trevor Place, Senior Eng. Specialist Enbridge Pipelines

Thursday, Feb 7, 2019 from 8:45AM - 11:30AM

Forum on Assessment of Microbiologically Influenced Corrosion (MIC) Threats and Failures: Approaches and Challenges

Outline – MIC Assessment

- Existence of Threat
- Magnitude of Threat
- Assessing MIC (RCA/diagnosis)
 - Discussion
 - Case Study

Existence

- Existence of threat is informed by:
 - Sampling and testing \rightarrow Bacteria are (nearly) everywhere
 - Experience \rightarrow A small number of confirmed instances of MIC
 - Presumption \rightarrow Rapid corrosion with no other explanation
 - Industry knowledge \rightarrow Constantly being refined/improved

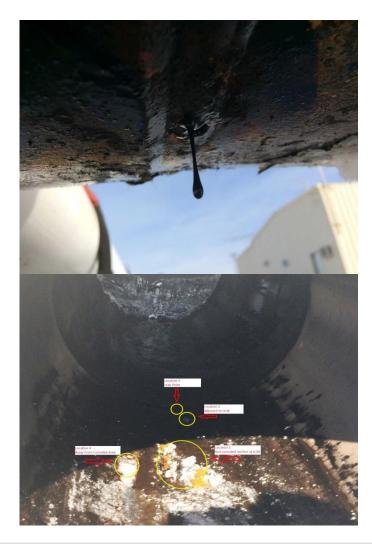
Magnitude

- Magnitude of threat is informed by:
 - Monitoring \rightarrow ILI is principal tool for mainlines
 - Experience \rightarrow Rapid corrosion is (thankfully) rare
 - Monitoring \rightarrow Near real-time SCADA analysis of operations
 - Experience \rightarrow Customized flow models/surveillance
 - Monitoring \rightarrow Pig trash is analysed for microbial activity
 - Industry knowledge \rightarrow Constantly being refined/improved

Assessing MIC (diagnosis)

- Presence of bacteria is not enough!
- Three supporting legs for MIC determination:
 - There are higher populations of bacteria at the failure site than in the environment, or at other non-corroded areas
 - There are corrosion product or chemical species consistent with the type of microorganisms observed
 - The corrosion (rate) can not be explained by other causes
 - genoMIC provides unique opportunity for world class analysis

Case Study - 1 (2012)



- Relief piping (~no flow)
- 6.35mm w.t.
- 19 years old
- Relative low spot (utility underpass)
- Lots of bacteria on bottom
 - Culture / microscopy
- More APB at leak compared to all other locations
- Dead leg, low spot, UDC
- MIC considered 'likely'

Case Study - 2 (2017)

- Manifold end (~no flow)
- mm w.t.
- years old
- Enhanced investigation:
 - Careful sampling
 - Preservation/storage
 - Expediting to lab
 - Clear/simple instructions
 - (some luck)

Results

	Analysis of Field Samples				Laboratory Cultures	
Location	рН	lron (mM)	Acetate (mM)	XRD	Sulphate consumption	Pitting severity
Leak site	6.92	343	17.26	FeCO ₃ : 45-55% Fe ₉ S ₈ : ND Fe: ND CaCO ₃ : 1-8%	3 mM/month	Most severe
Adjacent location	6.95	57	20.59	FeCO ₃ : 20-30% Fe ₉ S ₈ : ND Fe: 1-10% CaCO ₃ : 25-35%	2 mM/month	Moderate
Non- corroded area	6.67	12	2.42	FeCO ₃ : ND Fe ₉ S ₈ : 1-10% Fe: ND CaCO ₃ : 1-10%	1 mM/month	None

Conclusions

- Fermentative organisms producing organic acids figured prominently
- Biofilm formers also present in large numbers
- Organisms associated with EMIC were present (at lower numbers), and may have contributed to the corrosion at this site

