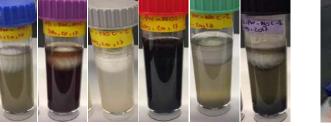
Genomics 101: How genomics can assist in MIC management

Lisa Gieg Biological Sciences


- Environmental samples can be monitored for the presence/activity of microorganisms in several ways – most common ways in O&G industry:
 - Enzyme tests e.g., ATP assay
 - 'Bug bottles' e.g., BART tests, MPNs
 - SRB
 - APB
 - HAB
 - Molecular microbiological methods (MMM)
 - = Genomics

- ATP assay
- 'Bug bottles' e.g., BART tests, MPNs
 - SRB
 APB
 HAB

KPI – 'number of bacteria' for system monitoring

- 'High' numbers don't necessarily mean MIC will be a problem
- 'Low' numbers don't necessarily mean MIC won't be a problem

- 'Bug bottles' e.g., BART tests, MPNs
 - SRB
 - APB
 - HAB
 - IRB, etc

Major Limitation:

• Growth based, targets <1% of microbes in a sample

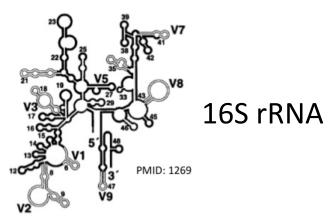
-e.g., captures only some SRB but not S⁰ or thiosulfate-reducers

Most microbes will not be captured in growth-based tests

Molecular microbiological methods (MMM) a.k.a. Genomics

- Newer approach, but now being widely used to identify microbes in O&G systems
- Not growth based

Based on DNA – life's blueprint!

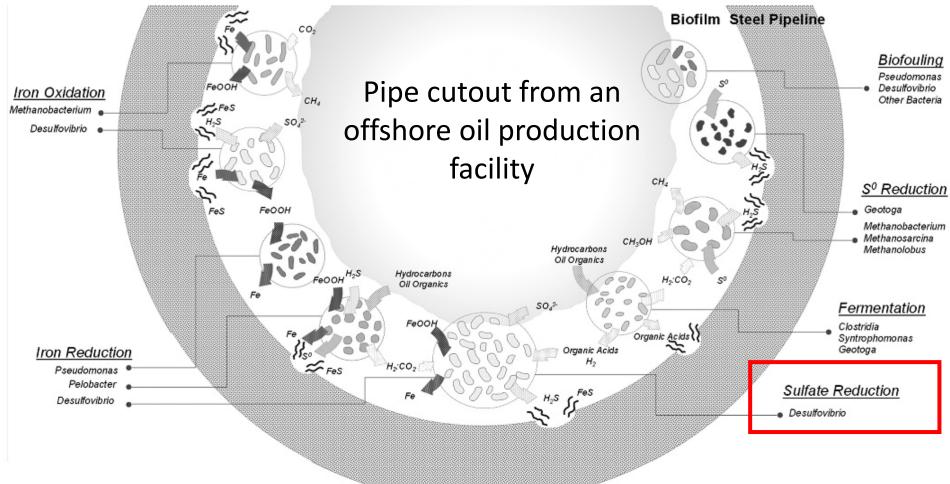

Genomics

Based on DNA – life's blueprint!

- Uses genetic information contained in microbial cells to determine what types of microbes and/or their potential metabolism (e.g., sulfide production)
- Not based on growth therefore better at capturing the diveristy of microbes in a sample

Genomics as a Monitoring Tool – 3 ways

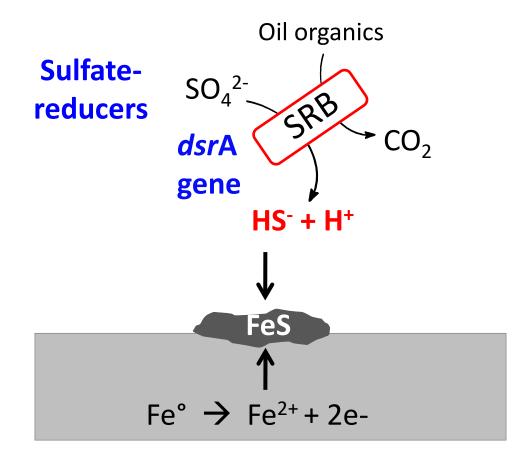
- 1. 16S rRNA gene survey commonly-used method
- Biological molecule present in all microbial life (involved in protein synthesis) conserved and variable regions


- Extract DNA
- AMPLIFY using primers in a PCR reaction make millions and millions of copies of a part of the 16S rRNA gene
- SEQUENCE on an instrument
- LIST of microbial names not quantitative but get a 'relative abundance'

Genomics as a Monitoring Tool – 16S

#Taxonomy (Class; Order; Family; Genus)	Relative abundance (% of total sequencing reads)					
	9FW 08/15	10TW 08/15	9FW 01/15	10TW 01/15	4PW 01/15	
Gammaproteobacteria;Alteromonadales; Alteromonadaceae;Marinobacter;	2.7	1.0	8.1	1.4	1.8	
Clostridia; Halanaerobiales; Halanaerobiaceae; Halanaerobium;	31.1	29.3	31.1	66.5	36.0	
Gammaproteobacteria; Thiotrichales; Piscirickettsiaceae; Thiomicrospira;	0.1	0.2	0.0	0.0	0.0	
Gammaproteobacteria; Oceanospirillales; Halomonadaceae; Modicisalibacter;	28.0	35.8	0.0	0.0	0.0	
Deltaproteobacteria; Desulfovibrionales; Desulfohalobiaceae; Desulfovermiculus;	1.0	1.2	1.0	6.4	40.5	
Gammaproteobacteria; Oceanospirillales; Halomonadaceae; Halomonas;	1.4	0.9	0.0	0.9	0.0	
Methanomicrobia; Methanosarcinales; Methanosarcinaceae; Methanohalophilus;	16.4	16.0	5.1	3.2	2.9	
Gammaproteobacteria;	0.0	0.0	0.4	0.3	0.0	
Betaproteobacteria; Burkholderiales; Burkholderiaceae; Ralstonia;	0.0	0.0	25.6	0.1	0.0	
Methanococci; Methanococcales; Methanococcaceae; Methanothermococcus;	1.2	1.3	0.0	1.4	1.4	
Gammaproteobacteria; Oceanospirillales; Halomonadaceae; Chromohalobacter;	9.8	5.5	0.0	0.0	1.3	

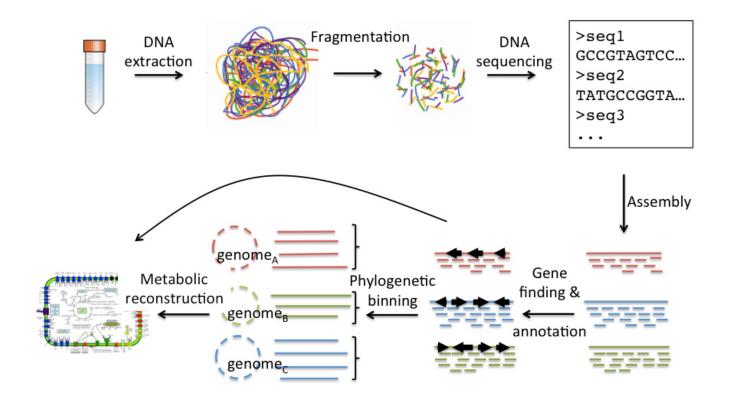
Genomics as a Monitoring Tool – 16S


'List of microorganisms' – infer metabolism!

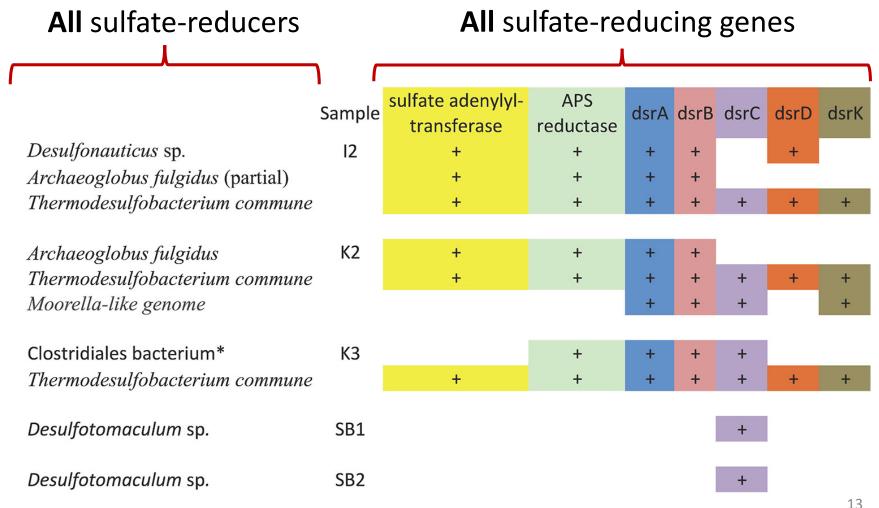
From Vigneron et al., 2016

Genomics as a Monitoring Tool – 3 ways

- 2. 'Functional' gene analysis commonly-used method
- Targets gene specific to a certain kind of microbe or metabolism
- Can quantify these to obtain numbers of specific microbes
 - qPCR
 - Primers specific to genes for sulfate-reducers, methanogens, etc.
 - Total Bacteria, Archaea

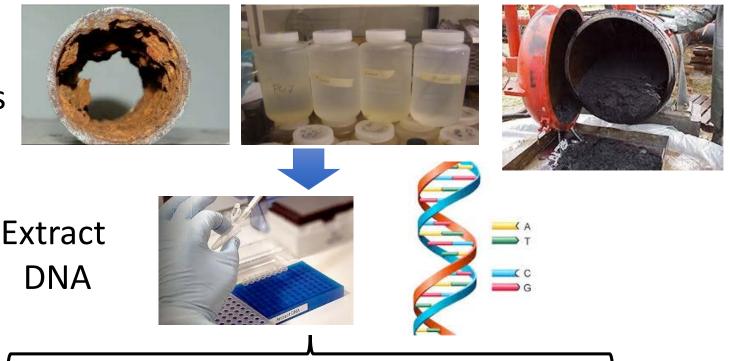

Chemical MIC

Genomics as a Monitoring Tool – qPCR


Analysis	Location ^a			
qPCR	Eider Production Manifold	Otter Production Pipeline	Inlet to Crude Crude Oil Oil Coalescer Coalescer PV V-1100 outlet V-110	
qPCR (gene abundance per cm ²) ^c Sessile samples from corrosion coupons				
Total bacteria	$< 4.0 \times 10^{2}$	4.6×10^{5}	$< 4.0 \times 10^{2}$	2.9×10^3
SRB	$< 4.0 \times 10^{2}$	2.9×10^4	$< 4.0 \times 10^{2}$	3.0×10^3
SRA	$< 4.0 \times 10^{2}$	$1.9 imes 10^4$	$< 4.0 \times 10^{2}$	1.1×10^4
Methanogens	$1.4 imes 10^5$	4.2×10^{11}	$5.0 imes 10^5$	4.2×10^5
MPN (cells per cm ²) ^b Sessile samples from corrosion coupons				
mSRB (30 °C)	$5.9 \times 10^{\circ}$	3.3×10^1	$0.5 imes 10^{0}$	$0.5 imes 10^{0}$

Genomics as a Monitoring Tool – 3 ways

- 3. Metagenomics less commonly used
 - All DNA sequenced in a sample
 - All the genetic potential of all microorganisms


Genomics as a Monitoring Tool – metagenomics

From Hu et al. 2016

Genomics as a Monitoring Tool

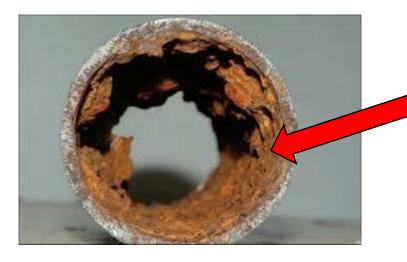
Field Samples

Amplicon sequencing

-16S rRNA gene

- -Identifies all microbes
- -Other 'functional' genes

-Identifies specific microbes/functions


Metagenomic Sequencing

-All DNA sequenced

-Complete genetic potential

Genomics as a Monitoring Tool

• Sampling & sample preservation very important!

Surface solids samples – where the key microbes are

- Very important to measure physical & chemical parameters
- Know operating conditions!

*Genomics data must be interpreted in context of a given operation and associated chemistry!

Microbiologically-influenced corrosion = microbiology + corrosion

*holds true for data from all microbial tests

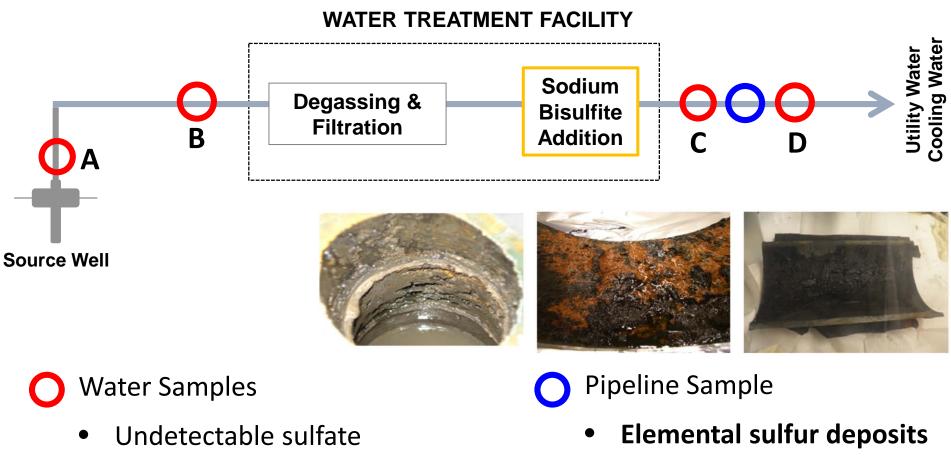
Genomics in MIC Management

Corrosion Management Process Step	Benefits of applying Genomics/MMM	
MIC Threat Assessment	 Characterize baseline microbiological conditions Look for associations between biofilm, biofilm composition and corrosion Relate biofilm characteristics with operating conditions 	
MIC Mitigation Selection		
MIC Barrier Monitoring	 Monitor long term and short term effects of mitigation on biofilm Monitor changes in chemical effectiveness Watch for shifts in microbiological populations 	

A 'Genomics' Case Study

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 2011, p. 6908–6917 0099-2240/11/\$12.00 doi:10.1128/AEM.05891-11 Copyright © 2011, American Society for Microbiology. All Rights Reserved. Vol. 77, No. 19

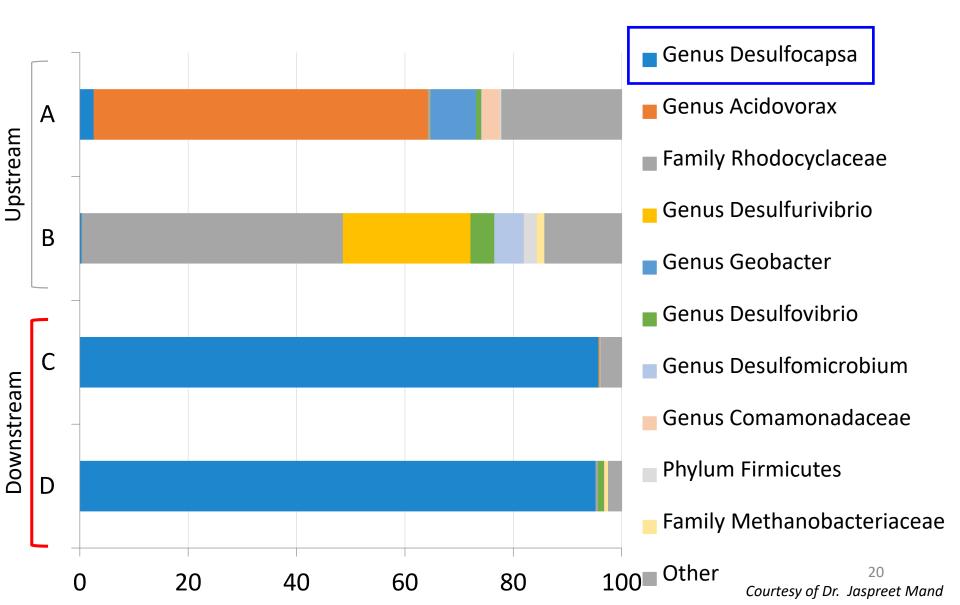
Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline[∀]†


Hyung Soo Park,¹‡ Indranil Chatterjee,¹‡ Xiaoli Dong,² Sheng-Hung Wang,² Christoph W. Sensen,² Sean M. Caffrey,¹ Thomas R. Jack,¹ Joe Boivin,³ and Gerrit Voordouw¹*

Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada¹; Visual Genomics Centre, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada²; and Cormetrics Limited, 56 Hawkwood Place NW, Calgary, Alberta T3G 1X6, Canada³

Received 18 June 2011/Accepted 5 August 2011

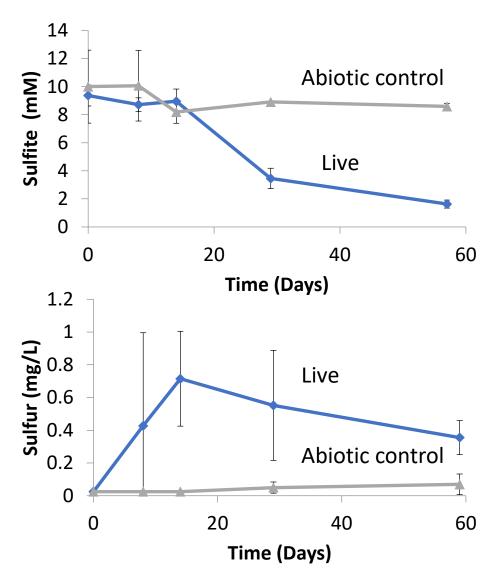
Effect of Bisulfite on Biocorrosion


'Who is there?' 16S rRNA gene sequencing...

• Low sulfide concentrations

Iron sulfide deposits

Microbial Community Composition

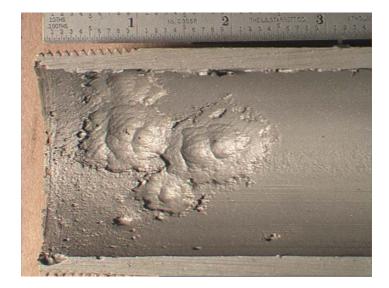

Sulfite and MIC

- It was assumed that sulfur, found downstream of bisulfite addition, was due to oxygen ingress
- However, sulfur may be result of bisulfite metabolism (disproportionation) by *Desulfocapsa*:

 $3HSO_3^- \rightarrow S^0 + 2 SO_4^{2-} + H_2O + H^+$

Resulting byproducts may be used by other microorganisms in the system

Microbial Enrichment on Sulfite


- Sulfite degradation is seen in incubations with the field sample relative to the abiotic control
- Elemental sulfur is produced
 - Genomics helped to pinpoint the problem
 - Altered KPI for bisulfite treatment

22 Courtesy of Dr. Jaspreet Mand

Genomics in MIC Management

- Genomics is a powerful microbiological monitoring tool that captures broadest diversity in a field sample
- contributes a 'piece of the corrosion puzzle' to help guide corrosion management and mitigation
 - monitoring programs (KPI)
 - effectiveness of treatments
 - failure analysis
 - risk management

Thank you! Questions?

R. Eckert, Materials Performance