Managing Microbial Corrosion in Canadian Offshore & Onshore Oil Production Operations – Project Overview

Faisal Khan

Engineering and Applied Science

Project Overview

- Improved monitoring, modeling & mitigation of MIC
- Integrate MIC as part of industry standards & corrosion management frameworks

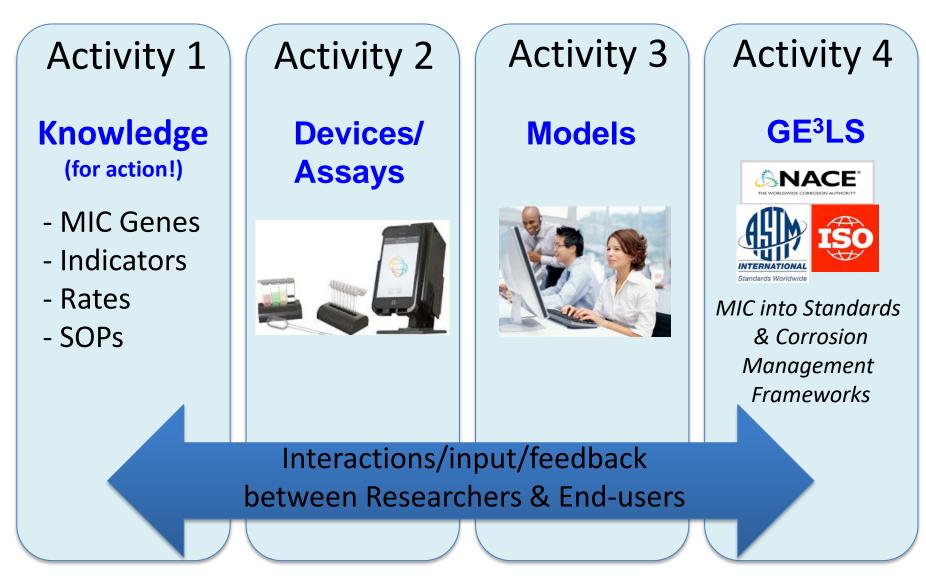
Meeting today:

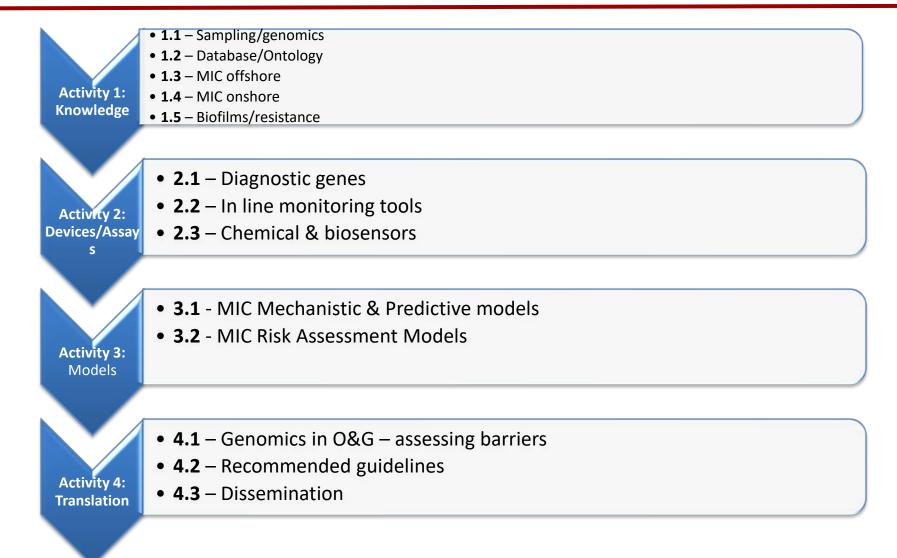
- Updates on research activities

Project scope

Activity 1: Knowledge

Activity 3: Models


Activity 2: Devices/Assays


Activity 4: Translation

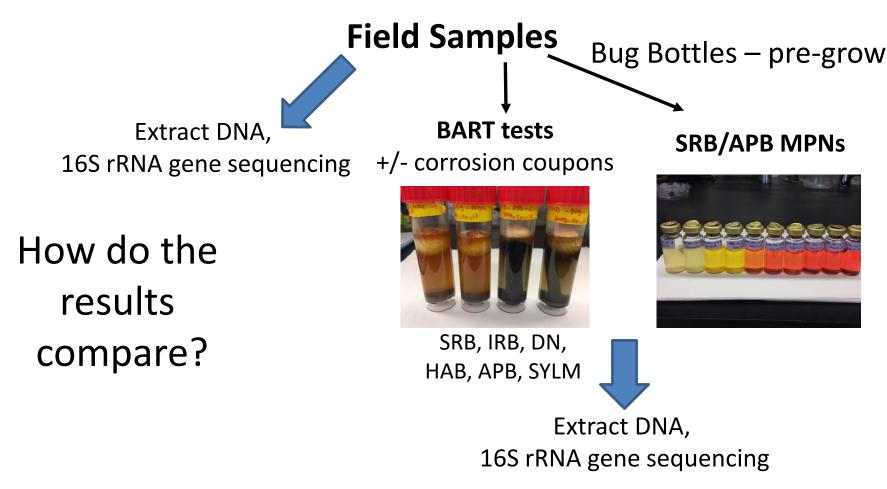
Project Scope & Deliverables

Project Activities

Activity 1

Working Group - Activity 1

Knowledge


Hawboldt, Gieg, Bottaro, Beiko, Strous, Haile, Wolodko, Suflita, Hubert, Turner, Voordouw

1.1 Field Sampling and Genomics

• Genomics

Preliminary Experiment:

16S rRNA gene sequencing vs. 'bug bottles' (BART tests and SRB/APB MPNs) for microbial community analysis

1.2 Database and Ontology

Ontology

MICON (Microbially Influenced Corrosion Ontology)

- Held two MICON meetings
- MetalHCR database schema as initial structure of ontology
- Early ontology build decisions:
 - MICON
 - OWL format
 - Open access
 - Imports of other relevant and established ontologies
- Contacted potential collaborators for the ontology:
 - OBI (Ontology of Biomedical Investigations)
 - OMP (Ontology of Microbial Phenotypes)
 - ECO (Evidence and Conclusion Ontology)

1.3 Offshore Chemistry

Objectives

- Investigating relationships between chemical species in oil and produced water
- MIC mechanisms that lead to facility failures in offshore oil production operations and in onshore pipelines
- Progress
 - Review of literature to identify chemical compounds playing role in microbial growth, corrosion, and/or present in offshore process streams (produced water, crude oil)
 - Identified environments we will simulate (sulfur, nitrogen, oxygen and combination0 → inclusion of carbon dioxide?
 - Vary T, pH, P, and salinity \rightarrow speciation
- Next steps thermodynamic analysis of proposed "environments"

1.3 Offshore Chemistry

- Next Steps
 - Once samples received PDF (Ali) begin analysis to inform PhD (Abdulhaq's) simulations and experiments
 - Information from genomes/microbial group on chemistry they may be "seeing" in samples
 - Biofilm set up meeting with Ray to discuss role and chemistry in more detail to inform simulations, experiments and analysis

1.4 MIC Onshore

Background

Onshore biologically active sludge corrosivity tests will be conducted using two systems (housed at InnoTech AB, Devon):

- Bench-top static system
- Lab/Pilot-scale flow loop system
 - Fabrication and commissioning to be performed once a suitable PhD student is hired

• Progress

- SOP- onshore document in progress
- Lab scale testing system design:
 - Batch
 - Flow through
 - Flow-loop
- Recruitment underway for 2 PhD students (Jan 2018)

1.5 Biofilms and biocides

- Damon Brown, the PhD student hired to work on this project completed his transition to the university from a corrosion engineering company and has started his program
- Ongoing discussions regarding experimental biofilm methodology, and are recognizing now the need for very well controlled parameters
 - Defined growth media
 - Model microbial community

Project Overview

Working Group - Activity 2

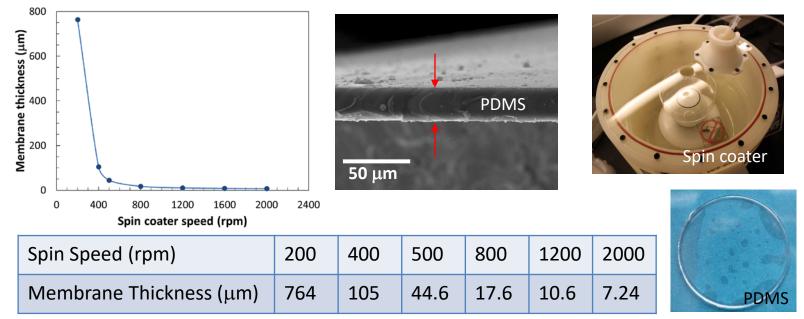
Devices/Assays

Bottaro, Gieg, Suflita, Pang, Haile, Wolodko

2.1 Diagnostic gene detection

- U of C: Drs. Mohita Sharma and Natalie Rachel newly hired
- Building off RPA (Recombinase Polymerase Amplification) technology devised by TwistX
- Currently surveying literature for key SRB and other groups of microbes, in samples associated with MIC to get consensus sequences for key taxa and genes

2.2 In-line monitoring


A prototype for monitoring biofilm – Gantt Chart

Start Date Oct 1, 2016											
LEGEND CODE											
On = On schedule	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	
Ahead = ahead of schedule	2016		2017				201	18			
	Oct 1, - Dec	Jan 01 -	Apr 01 -	Jul 01 -	Oct 01 -	Jan 01 -	Apr 01 -	Jul 01 -	Oct 01 -	Jan 01 -	1
Behind = behind schedule	31	Mar 31	Jun 30	Sep 30	Dec 31	Mar 31	Jun 30	Sep 30	Dec 31	Mar 31	
Complete = milestone finished											
Literature Review											
Biofilm Monitoring Tools/Capacitance Based											
Journal Review Paper											
Patent landscape review and application											
MIC/corrosion Monitoring tools											
Conference Paper											
Prototype development											
Engineering design											
Fabrication											
Prototype Validation											
Bench-top Validation											
Flow-loop Validation											
Journal paper											T
Thesis writing											
End											
											_

2.3 MIPs & sulfide sensor

- Sulfide sensor (NRCan)
 - Incorporation of H₂S permeable PDMS polymer membrane for improved sensor selectivity

Fabrication of PDMS by spin coating process optimized

- New MSc student Danika Nicoletti just started at U of C
 - Surveying literature for organisms harboring 'sulfide oxidase'

Project Overview

Working Group - Activity 3

Models

Haile, Khan, Wolodko, Skovhus

3.1 Mechanistic and predictive MIC models

Start Date Oct 1, 2016	j															
	-															
LEGEND CODE																
On = On schedule	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
Ahead = ahead of schedule	2016		2017			2018			2019			2020				
	Oct 1, -	Jan 01 -	Apr 01 -		Oct 01-	1				Jan 01 -		1	Oct 01-	Jan 01 -	Apr 01 -	
Behind = behind schedule	Dec 31	Mar 31	Jun 30	Sep 30	Dec 31	Mar 31	Jun 30	Sep 30	Dec 31	Mar 31	Jun 30	Sep 30	Dec 31	Mar 31	Jun 30	Sep 30
Complete = milestone finished																
Literature Review												<u> </u>				
MIC Models											Ļ,	ļ				
Corrosion Models																
Journal Review Paper Draft manuscript																
Biofilm + Growth rate models																
Growth Kinetics of Corrosive Microbes																
Journal Review Paper - Summitted																
Model Development																
Programming																
Simulation runs																
Journal Paper Draft manuscript																
Journal Review Paper - Summitted																
Model Validation																
Bench-top Testing																
Growth Kinetics of Corrosive Microbes																
Tunning																
Simulation runs																
Journal Review Paper Draft manuscript																
Journal Review Paper - summitted																
Flow-loop Testing																
Growth Kinetics of Corrosive Microbes																
Model Tunning																
Simulation runs																
Journal Review Paper Draft manuscript																
Journal Review Paper - reviewed by co-atuhors																
Thesis writing																
								1	1			1				

3.1 Mechanistic and predictive MIC models

Model development efforts at InnoTech

- ✓ Relationship between planktonic and sessile bacteria: Theoretical/Empirical approach
- ✓ Effect of flow velocity on detachment rate: boundary condition and Peclet number effect (competition between convection vs diffusion)
- ✓ Effect of temperature in bacteria kinetics: Monod equation parameters
- \checkmark Effect of microbes interaction in growth kinetics and corrosion rate

• Next step

- ✓ Coding to include the following parameters:
 - Few microbes to be included in addition to SRB
 - Growth kinetics
 - Transport phenomenon (mass transfer vs momentum)
 - Environmental conditions (Chemistry + Operating conditions)

3.1 Mechanistic and predictive MIC models

- Mechanistic Model development efforts at MUN
- Mechanistic Model development: A modification of the Gu-Zhao-Nesic model is proposed to incorporate the impact on the corrosion rate of this by-product (Nonso Ezenwa)
- Predictive Model development: A symptom based approach is being considered in the mechanistic model using microbial footprint (Abdul Waris)
- Molecular Model development: Literature review in progress; the use of molecular mechanics and quantum mechanics can be used verify the various hypothesis that have been proposed to explain SRB corrosion (Nonso Ezenwa)

3.2 – MIC Risk Assessment Models

Objectives

- Understanding the state-of-the-art and the requirements for practical MIC Quantitative Risk Model
- Integrating the probabilistic failure rate model with MIC failure consequence model to develop a MIC Quantitative Risk Model
- Use of risk-time profiles as a criteria for remining life evaluation and fitnessfor-service decisions
- Sharing the model with the industry to test and improve
- Developing recommendations for existing integrity assessment and FFS codes, standards and guidelines

3.2 – MIC Risk Assessment Models

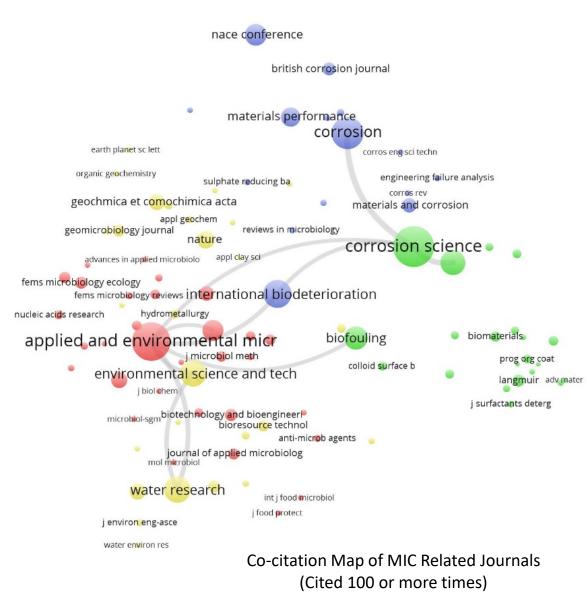
Progress

- A bibliometric MIC review is submitted to NACE Corrosion
- MIC Risk Models Literature review is complete
- Knowledge gap analysis started, review paper manuscript in preparation
- A probabilistic failure rate model based on Object Oriented Bayesian Analysis (OOBA) is under development. Manuscript under preparation

Project Overview

Working Group - Activity 4 Translation (GE³LS)

Skovhus, Wolodko, Gieg, Khan, Eckert, Lefsrud, Jack


4.1 – Genomics in O&G – assessing barriers

- Completed a high level bibliometric review of MIC in conjunction with Memorial University (lead)
- Review Paper accepted (with revisions) for publication in Corrosion.

4.1 – Genomics in O&G – assessing barriers

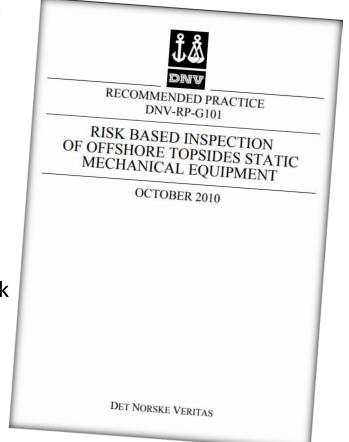
In Progress

- Conducting further bibliometric analyses to investigate the following:
 - Interdisciplinary of MIC research, and whether or not information is being passed between disciplines
 - Relationship between academia and industry, specifically the publishing and citation tendencies between conference papers and journal articles (i.e. Does academic research in MIC get translated to industry?)
- Preliminary research into patents related to MIC tools and technologies, and assessing possible focus areas and analysis outcomes.
- Review of MIC failure statistics and assessment methods in Alberta pipelines (i.e. to determine quantified statistics related to prevalence of MIC). Currently, finalizing agreement with AER to access their failure report databases.
- Revision of industry surveys to reduce length (multiple surveys and methods being considered).
- Developing plan for MIC technology mapping exercise.

Source: Hashemi, Khan, Hawboldt, Bak, Lefsrud, Wolodko (2017), NACE Corrosion Journal, Accepted with minor revisions

Nodo 1	Cubiest Catagon	Nada 2	Cubiest Catagory	VOSViewer
Node 1	Subject Category	Node 2	Subject Category	Link Strength
Corrosion Science	Metallurgy/Metallurgical	Corrosion	Metallurgy/Metallurgical	14,269
	Engineering, Materials		Engineering, Materials Science	
	Science Multidisciplinary		Multidisciplinary	
Corrosion Science	Metallurgy/Metallurgical	Electrochimica Acta	Electrochemistry	13,632
	Engineering, Materials			
	Science Multidisciplinary			
Applied	Microbiology and Applied	Water Resources	Water Resources,	9,701
nvironmental	Microbiology		Environmental Sciences,	
Vicrobiology			Engineering Environmental	
pplied	Microbiology and Applied	International	Environmental Sciences,	7,997
Invironmental	Microbiology	Biodeterioration	Biotechnology Applied	
Vicrobiology		Biodegradation	Microbiology	
Vater Research	Water Resources,	Environmental Science	Environmental Sciences,	7,954
	Environmental Sciences,	Technology	Engineering Environmental	
	Engineering Environmental			
Applied	Microbiology and Applied	Environmental Science	Environmental Sciences,	7,677
Invironmental	Microbiology	Technology	Engineering Environmental	
Aicrobiology				
Corrosion Science	Metallurgy Metallurgical	International	Environmental Sciences,	6,915
	Engineering, Materials	Biodeterioration	Biotechnology Applied	
	Science Multidisciplinary	Biodegradation	Microbiology	
Corrosion Science	Metallurgy Metallurgical	Applied Environmental	Microbiology and Applied	6,387
	Engineering, Materials	Microbiology	Microbiology	
	Science Multidisciplinary			
Applied	Microbiology and Applied	Biofouling	Marine Freshwater Biology,	6,250
nvironmental	Microbiology		Biotechnology Applied	
Лicrobiology			Microbiology	
Applied	Applied Microbiology and	Applied Environmental	Microbiology and Applied	6,119
Vicrobiology	Biotechnology	Microbiology	Microbiology	
Biotechnology				

TABLE 3. Most frequent co-citation linkages between MIC related publications


4.2 – Recommended guidelines

- A formal request has been sent to NACE to establish a new TG (answer is pending)
- A meeting in Phoenix has been scheduled at CORROSION 2018
- The name of the standard TG would be "Molecular Microbiological Methods – Sample Handling and Laboratory Processing"
- Renato De Paula Chair
- Torben Lund Skovhus Vice Chair

4.2 – Recommended guidelines

- Sept. 8 a meeting with DNV GL on the review cycle of DNV-RP-G101 was held
- MIC will be included in a new appendix in the next version of the document
- Torben & Rick agreed to draft a TOC on what the appendix could contain
- DNV GL in Norway will review input and give feedback and a deadline
- Torben & Rick will start to collect input to MIC Failure investigation protocol shortly (operator and end-user input is important)
- A best practice developed by academia for industry application...

