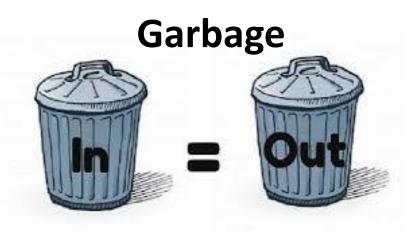
Sampling & Methods for MIC Determination


By Tom Jack & Lisa Gieg

Biological Sciences

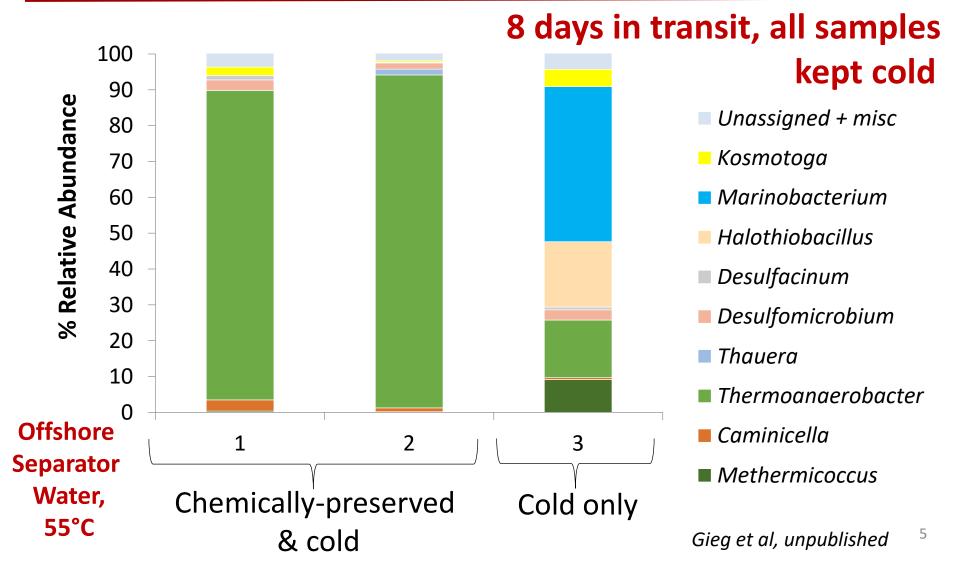
Sampling SOPs (Standard Operating Procedures)

 Microbial/genomics and corrosion data are only as good as samples taken!

• NACE (e.g., TM0194-2014; TM0212-2018) and other standards (DNV GL RPs, etc.)

 \Rightarrow consistent, high quality sampling

Sampling SOPs


- Important to have <u>sampling SOPs in place for:</u>
 - <u>Liquids</u> (e.g., produced water)
 - <u>Solids</u> (e.g., pig solids, corrosion coupons, pipeline scrapings)
 - Ensure as high quality samples as possible
- Recommended materials and preservation methods
 - Sterile vessels and sampling tools
 - Filled to brim to minimize air
 - Proper preservation and timely shipment to lab for further analysis are <u>critical</u>

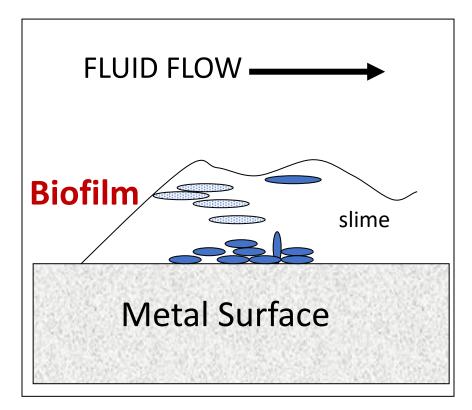
Sampling SOPs

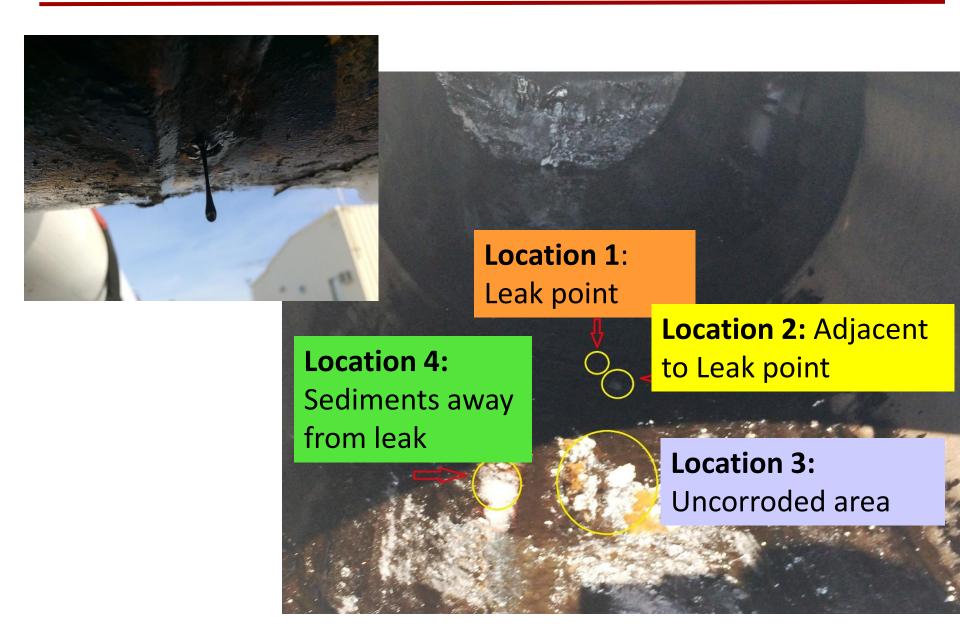
- Samples for conducting lab experiments/microbial corrosion experiments
 - keep cold (on ice, do not freeze)
 - can feasibly add samples to anoxically-prepared serum bottles already containing carbon steel beads or coupons (good for long transport times)
- Samples for genomic analysis
 - can stay on ice for short time (24-48 h)
 - add chemical preservative
 - DNAzol[™], RNAlater[™], ethanol, isopropanol, etc.
 - filter in-field and add preservative or keep cold

Microbial community composition can change dramatically during transport if samples not chemically-preserved after sampling

Where to Sample?

 Corrosion occurs at the metal surface therefore surface-attached/sessile microorganisms are the best samples to get

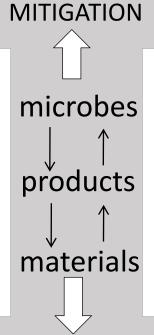


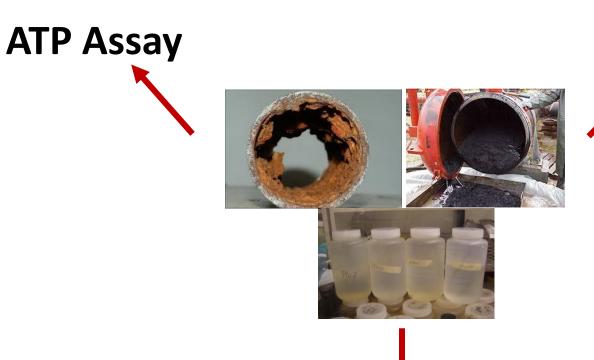

Photo: Torben L. Skovhus

Where to Sample?

- Sessile samples can be challenging to obtain but provide the most relevant information
 - Sampling corroded & uncorroded areas helps to assess importance of MIC
 - Liquid samples more common and sometimes are the only possible samples

To help understand MIC – need to obtain samples from lines/operations with history of MIC, and compare with those with no history


Where to Sample?


Measuring & Diagnosing MIC

- Diagnosing the root cause of corrosion can be very challenging
- No single measurement can identify MIC
- Three types of evidence needed:
 - Microbiological
 - Chemical
 - Metallurgical

All should be consistent with MIC

MITIGATION

Bug bottles

Molecular Microbiological Methods (MMM)

Genomics, qPCR

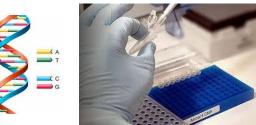
ATP Assay

Metabolic Activity ≈ microbial counts

Bug bottles

Microbial counts (SRB, APB, etc.)

Advantages:


- Most widely used, especially for baseline monitoring/KPI's
- Easy to use/interpret (if done right)

Disadvantages:

ATP assay: no information on types of microorganisms present Bug bottles: only counts those organisms that can be cultured (targets <1% of all microorganisms)

Molecular Microbiological Methods (MMM)

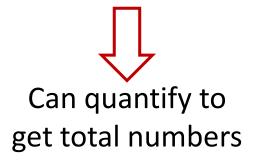
Genomics, qPCR

Advantages:

- No cultivation based on genetic material
- Total microbial community!
- Some methods give microbial counts (qPCR) common KPI

Disadvantages:

• Data interpretation more complex


Genomics (MMM) as a Monitoring Tool

(1) 16S rRNA genes

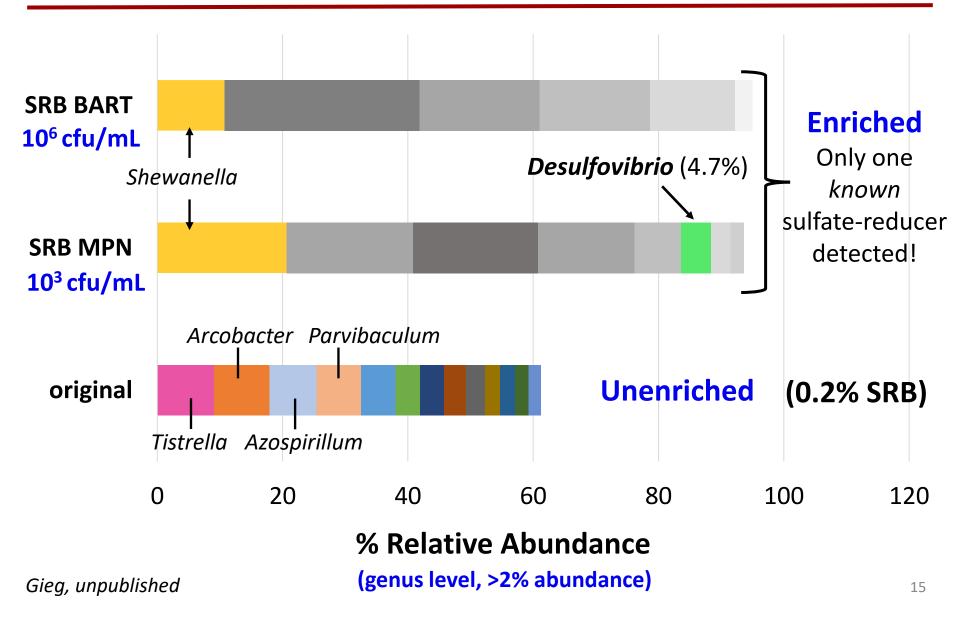
- 'Fingerprint' molecule that identifies <u>all</u> microorganisms in a sample
- <u>'Who' is there</u>?

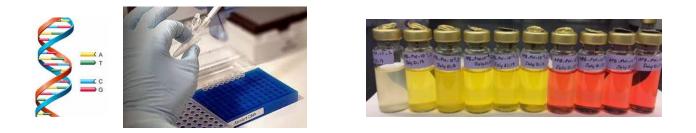
(2) 'Functional' genes

Genes that encode for
<u>specific</u> kind of microorganism
(or metabolism) in a sample
e.g., gene for sulfide production

Can quantify to get total numbers

(3) Metagenomic sequencing

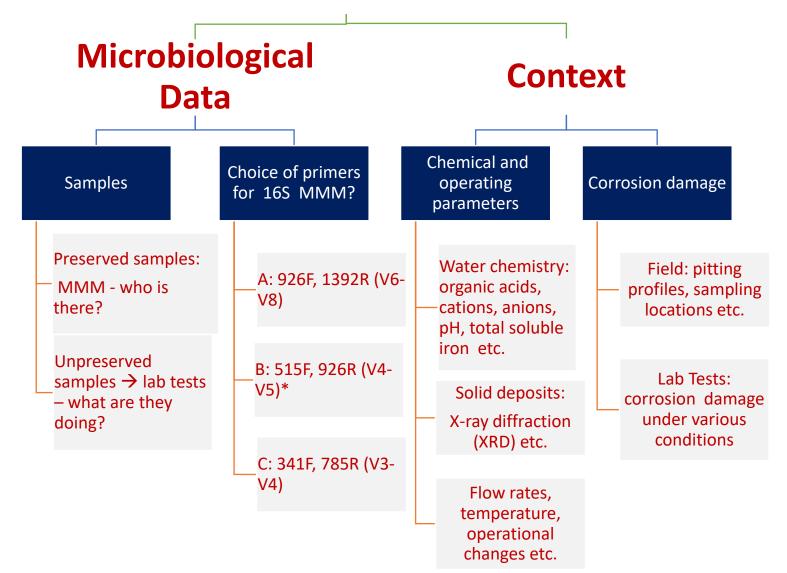

- Total DNA sequenced in a sample
- Complete genetic potential


Genomic Analysis (qPCR) vs. Bug Bottles (MPN)

Analysis	Location ^a			
	Eider	Otter	Inlet to Crude	Crude Oil
	Production	Production	Oil Coalescer	Coalescer PW
	Manifold	Pipeline	V-1100	outlet V-1100
qPCR (gene abundance per cm ²) ^c Sessile samples from corrosion coupons				
Total bacteria	$< 4.0 \times 10^{2}$	4.6×10^{5}	$< 4.0 \times 10^2$	$2.9 imes 10^3$
SRB	$< 4.0 imes 10^2$	2.9×10^4	$< 4.0 \times 10^{2}$	3.0×10^{3}
SRA	$< 4.0 imes 10^2$	$1.9 imes 10^4$	$< 4.0 \times 10^2$	1.1×10^4
Methanogens	1.4×10^{5}	$4.2 imes 10^{11}$	$5.0 imes 10^5$	4.2×10^5
MPN (cells per cm ²) ^b \Rightarrow Lower numbers! Sessile samples from corrosion coupons				
mSRB (30 °C)		3.3×10^{1}	$0.5 imes 10^{0}$	$0.5 imes 10^{0}$

Modified from Skovhus et al. 2017, J. Biotechnol. 256: 31-45.

Bug Bottles vs. Genomics Analysis


KPI – 'number of bacteria' for system monitoring

'High' numbers don't necessarily mean MIC will be a problem'Low' numbers don't necessarily mean MIC won't be a problem

You need to get the whole story \Rightarrow multiple lines of evidence

MIC

approach Holistic

Summary

- Data are only as good as your samples!
 - Important to have SOPs in place for sampling and preservation for field samples
 - Take samples from appropriate locations (corroded vs. non-corroded area)
- Diagnosing MIC requires multiple lines of evidence
 - Chemical
 - Metallurgical
 - Microbiological
 - Genomics cultivation-free!
 - ATP/bug bottles

Thank you!