Gør tanke til handling VIA University College

Current and Future Standards for MIC Management

Dr. Torben Lund Skovhus VIA University College, Denmark

Agenda

- Why standards?
- Current standards on MIC
 - Some challenges...
- Future standards on MIC
 - Our current plan...
- Opening up for comments, suggestions and discussion

Standards are published documents that establish specifications and procedures designed to ensure the reliability of the materials, products, methods, and/or services people use every day. Standards address a range of issues, including but not limited to various protocols that help ensure product functionality and compatibility, facilitate interoperability and support consumer safety and public health.

29. april 2019 3

Standards are published documents that establish specifications and procedures designed to ensure the reliability of the materials, products, methods, and/or services people use every day. Standards address a range of issues, including but not limited to various protocols that help ensure product functionality and compatibility, facilitate interoperability and support consumer safety and public health.

29. april 2019 4

Why standards?

Pros and cons

VIA University College

Why standards?

Pros and cons

VIA University College

Nov. 10, 1999: Metric Math Mistake Muffed Mars Meteorology Mission

1999: A disaster investigation board reports that NASA's Mars Climate Orbiter burned up in the Martian atmosphere because engineers failed to convert units from English to metric.

VIA University College

Where we don't want to end up...

Activity 1

- MIC Genes
- Indicators
- Rates
- SOPs

Activity 2

Devices/ Assays

Activity 3

Models

MIC into Standards & Corrosion Management Frameworks

Interactions/input/feedback between Researchers & End-users

Current standards on MIC

TABLE 7.1

Published Standards on Oilfield Corrosion Management and Inspection

Standard/Guidance Document

DNV-RP-F116, Integrity management of submarine pipeline systems (2015)EFC 64, Recommended Practice for Corrosion Management of Pipelines in
Oil & Gas Production and Transportation (2012)DNV-RP-G101, Risk Based Inspection of Offshore Topsides Static
Mechanical Equipment (2010)Guidance for Corrosion Management in Oil and Gas Processing (2008)Review of Corrosion Management for Offshore Oil and Gas Processing
(2001)

Source

DNV GL European Federation of Corrosion DNV GL

Energy Institute Health and Safety Executive

Skovhus, Enning & Lee (CRC Press 2017)

VIA University College

Current standards on MIC

TABLE 7.2

Published Standards with the Topic of Oilfield Microbiology and MIC

Standard/Guidance Document	Source
TMO194-2014, Standard Test Method Field Monitoring of Bacterial Growth in Oil	NACE
and Gas Systems (2014)	International
TMO212-2012, Standard Test Method Detection, Testing, and Evaluation of	NACE
Microbiologically Influenced Corrosion on Internal Surfaces of Pipelines (2012)	International
A Practical Evaluation of 21st Century Microbiological Techniques for the Upstream	Energy
Oil and Gas Industry (2012)	Institute
SP0499-2007, Standard Practice Corrosion Control and Monitoring in Seawater	NACE
Injection Systems (2007)	International
TM0106-2006, Detection, Testing, and Evaluation of Microbiologically Influenced	NACE
Corrosion (MIC) on External Surfaces of Buried Pipelines (2006)	International
Technical Report Publication 31205, Selection, Application, and Evaluation of	NACE
Biocides in the Oil and Gas Industry (2006)	International

Skovhus, Enning & Lee (CRC Press 2017)

- Just another standard...?
- Where should it live (organization)?
- How do we make it work in the field?
- How does it link to existing standards?

- Influence *existing* channels or building *new* standards?
- Standardization could be on several levels (sampling, handling, transportation, lab-processing, method selection, data displaying, interpretation in models, etc...)

Working with *existing* guidelines/standards:

Standard	Focus
NACE TMO212 (2018)	Standard Test Method: MIC on internal surfaces of pipelines
DNVGL-RP-F116 (2015)	Integrity management of submarine pipeline systems
DNVGL-RP-G101 (2010)	Risk Based Inspection (RBI) of offshore topsides static mechanical equipment

Working on *new* guidelines/standards:

Standard	Focus	Approach
TG-561 (NACE)	Title: Molecular Microbiological Methods – Sample Handling and Laboratory Processing	2nd meeting in the TG at NACE CORROSION 2019 Wednesday 8-10 am this week
	Task: Develop a standard test method that may be used to perform DNA-based microbiological analysis of samples collected for corrosion monitoring and control	3 sub-groups have been working on sections over the past year

Working on <u>new</u> guidelines/standards:

Standard	Focus	Approach
DNV GL-RP-XXXX	Pipeline failure investigation protocol including advanced MIC diagnostics	Our project will develop a new approach for combining classical failure investigation protocols with modern genomics data and MIC diagnostics Industry input is needed

Thank you!

Thank you!

Genome Canada Genome Alberta **Genome Atlantic** Alberta Innovates InnoTech Alberta Natural Resources Canada Mitacs Innovate NL

Baker Hughes, a GE Company	Luminultra
Bioclear Microbial Analysis	NALCO Champion
BP	OSP
DNV GL	PeroxyChem
Dow Microbial Control	Shell
Enbridge	Schlumberger
Husky Energy	Suez
Kinder Morgan	Suncor

Contact details

Torben Lund Skovhus, MSc, PhD Associate Professor and Project Manager

VIA Building, Energy, Water & Climate Centre for Applied Research & Development

VIA University College Chr. M. Østergaards Vej 4 DK-8700 Horsens

T: +45 87 55 42 96 E: tols@via.dk Twitter: @Torben_Skovhus

29. april 2019 19