
Paper ID #32814

Eye-Track Modeling of Problem-Solving in Virtual Manufacturing
Environments

Rui Zhu, Complex System Monitoring, Modeling and Analysis Laboratory, The Pennsylvania State Univer-
sity, University Park, PA, 16802, USA

Rui Zhu is a Ph.D. candidate in the Harold and Inge Marcus Department of Industrial and Manufacturing
Engineering at the Pennsylvania State University. Her research interests focus on sensor-based modeling,
analysis, and optimization of complex systems, with applications in virtual reality, healthcare, and smart
communities.

Dr. Faisal Aqlan, The Pennsylvania State University - Erie Campus

Dr. Faisal Aqlan is an Associate Professor of Industrial Engineering at The Pennsylvania State Uni-
versity, The Behrend College. He received his Ph.D. in Industrial and Systems Engineering form The
State University of New York at Binghamton. His research interests include sensor-based virtual reality
for manufacturing and healthcare applications. He is a senior member of the Institute of Industrial and
Systems Engineers (IISE) and currently serves as the IISE Vice President of Student Development.

Dr. Richard Zhao, University of Calgary

Dr. Richard Zhao is an Assistant Professor in the Department of Computer Science at the University
of Calgary. He leads the serious games research group, focusing on games for training and education
where he utilizes artificial intelligence, virtual reality and eye-tracking technologies for this purpose. He
is currently working on a game-focused graduate program at the University of Calgary. He received his
M.S. and Ph.D. in Computing Science from the University of Alberta. Dr. Zhao has served as a program
committee member on academic conferences such as the International Conference on the Foundations of
Digital Games (FDG), the AAAI Conference on Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE) and the ACM Special Interest Group on Computer Science Education (SIGCSE) Technical
Symposium.

Prof. Hui Yang, The Pennsylvania State University

Dr. Hui Yang is a Professor in the Harold and Inge Marcus Department of Industrial and Manufacturing
Engineering at The Pennsylvania State University, University Park, PA. Dr. Yang’s research interests focus
on sensor-based modeling and analysis of complex systems for process monitoring, process control, sys-
tem diagnostics, condition prognostics, quality improvement, and performance optimization. His research
program is supported by National Science Foundation (including the prestigious NSF CAREER award),
National Institute of Standards and Technology (NIST), Lockheed Martin, NSF center for e-Design, Susan
Koman Cancer Foundation, NSF Center for Healthcare Organization Transformation, Institute of Cyber-
science, James A. Harley Veterans Hospital, and Florida James and Esther King Biomedical research
program. His research group received a number of best paper awards and best poster awards from IISE
Annual Conference, IEEE EMBC, IEEE CASE, and INFORMS.

Dr. Yang is the president (2017-2018) of IISE Data Analytics and Information Systems Society, the pres-
ident (2015-2016) of INFORMS Quality, Statistics and Reliability (QSR) society, and the program chair
of 2016 Industrial and Systems Engineering Research Conference (ISERC). He is also an associate editor
for IISE Transactions, IEEE Journal of Biomedical and Health Informatics (JBHI), IEEE Transactions on
Automation Science and Engineering (TASE), IEEE Robotics and Automation Letters (RA-L), Quality
Technology & Quantitative Management, and an Associate Editor for the Proceedings of IEEE CASE,
IEEE EMBC, and IEEE BHI.

c©American Society for Engineering Education, 2021



Eye-Track Modeling of Problem-Solving in Virtual Manufacturing 

Environments 

 
Abstract 

Problem-solving focuses on defining and analyzing problems, then finding viable solutions 

through an iterative process that requires brainstorming and understanding of what is known and 

what is unknown in the problem space. With rapid changes of economic landscape in the United 

States, new types of jobs emerge when new industries are created. Employers report that 

problem-solving is the most important skill they are looking for in job applicants. However, there 

are major concerns about the lack of problem-solving skills in engineering students. This lack of 

problem-solving skills calls for an approach to measure and enhance these skills. In this research, 

we propose to understand and improve problem-solving skills in engineering education by 

integrating eye-tracking sensing with virtual reality (VR) manufacturing. First, we simulate a 

manufacturing system in a VR game environment that we call a VR learning factory. The VR 

learning factory is built in the Unity game engine with the HTC Vive VR system for navigation 

and motion tracking. The headset is custom-fitted with Tobii eye-tracking technology, allowing 

the system to identify the coordinates and objects that a user is looking at, at any given time 

during the simulation. In the environment, engineering students can see through the headset a 

virtual manufacturing environment composed of a series of workstations and are able to interact 

with workpieces in the virtual environment. For example, a student can pick up virtual plastic 

bricks and assemble them together using the wireless controller in hand. Second, engineering 

students are asked to design and assemble car toys that satisfy predefined customer requirements 

while minimizing the total cost of production. Third, data-driven models are developed to 

analyze eye-movement patterns of engineering students. For instance, problem-solving skills are 

measured by the extent to which the eye-movement patterns of engineering students are similar 

to the pattern of a subject matter expert (SME), an ideal person who sets the expert criterion for 

the car toy assembly process. Benchmark experiments are conducted with a comprehensive 

measure of performance metrics such as cycle time, the number of station switches, weight, 

price, and quality of car toys. Experimental results show that eye-tracking modeling is efficient 

and effective to measure problem-solving skills of engineering students. The proposed VR 

learning factory was integrated into undergraduate manufacturing courses to enhance student 

learning and problem-solving skills. 

 

1. Introduction 

 

Manufacturing serves as a key wealth-creation engine and a vital provider of jobs in the United 

States. Rapid technological advances call upon manufacturing industries to evolve and respond 

to fierce-competing markets, new production paradigms, and data proliferation [1]. As the future 

workforce in manufacturing industries, engineering students need efficient and effective learning 

schemes to keep up with the technological advancements. A learning factory was developed by 

the Pennsylvania State University in 1994 to provide a close-to-industry environment to 

engineering students [2]. This learning factory involves a college-wide infrastructure to support 

industry-related design projects. Students can be involved in hands-on activities and solve real-

world problems in a realistic manufacturing environment. However, some universities may not 

be able to introduce the latest manufacturing systems and technologies into the learning factory 

due to limited financial resources. Also, manufacturing safety is important to reduce the risks of 



workplace injury. Injuries to students may cause significant compensation and medical treatment 

costs [3]. Therefore, it is imperative to develop a cost-effective and safe learning environment for 

engineering students to get hands-on training. 

 

Virtual reality (VR) has emerged as a new technology which simulates the real-world experience 

in an immersive virtual environment. This combined with the advances in computational power 

and the maturation of game engine technologies allow students to interact with virtual objects in 

ways never possible before. Therefore, VR can serve as an enabling tool to mimic the physical 

learning factory. A VR learning factory is flexible to changes in manufacturing systems, thereby 

providing students with the state-of-the-art manufacturing technologies. On the other hand, the 

availability of eye-tracking sensing technology facilitates the acquisition and analysis of eye 

movements in the VR learning factory. Eye movements allow for revealing cognitive processes 

of engineering students while solving problems [4]. Thus, it is significant to integrate the VR 

learning factory with the data analytics of eye movements, so as to understand and enhance 

problem-solving skills of engineering students.  

 

In this research, we integrate gaming technology, VR and eye-tracking sensing to evaluate and 

enhance problem-solving skills of engineering students. First, we simulate a learning factory in a 

VR game environment. The VR learning factory is built in the Unity game engine with the HTC 

Vive VR system for navigation and motion tracking. A headset custom-fitted with Tobii eye-

tracking technology identifies the coordinates and objects a user is looking at. In the VR 

environment, engineering students see through the headset a virtual learning factory composed of 

a series of workstations and can interact with the workpieces in the virtual environment. Second, 

engineering students are asked to design and assemble car toys that satisfy predefined customer 

requirements while minimizing the total cost of production in the VR learning factory. Third, eye 

movements of engineering students are analyzed with data-driven models to evaluate the 

problem-solving skills of engineering students. 

 

2. Relevant Literature 

 

2.1 Learning Factory 

Understanding manufacturing processes, dealing with change, and working collaboratively have 

been reported as the most important technical challenges that new engineering graduates face in 

manufacturing industries [5]. It is crucial to bridge the gap between engineering graduates’ 

problem-solving skills and competencies needed in manufacturing industries. The learning 

factory was first developed for students to gain hands-on experience by applying classroom 

knowledge to solve real-world engineering problems offered by manufacturing industries [2]. In 

the past decade, the learning factory was tailored and evolved to enhance hands-on training and 

learning experience for students and practitioners [6]. For example, the learning factory for lean 

production at the Technical University of Munich is designed for implementing theoretical 

principles into a real lean production environment [7]. In the new era of Industry 4.0, a 

significant number of learning factories strive to incorporate digital twin concepts through 

creating their virtual representations. However, convergence between physical and virtual 

learning factories remains to be an unresolved challenge [8]. The availability of VR enables the 

development of virtual learning factories by providing an immersive virtual environment in a 3D 

simulation. VR is flexible to changes in modern manufacturing systems and encourages 



collaboration through a shared visualization [9]. Combined with player modeling techniques, 

learning factories can bring about effective learning experiences for students [10]. It is promising 

to utilize VR technology to enhance the learning experience in learning factories. 

 

2.2 Eye-Tracking in Complex Problem-Solving 

Complex problem-solving requires many cognitive activities. The availability of eye-tracking 

technology facilitates the study of cognitive activities through measuring an individual’s eye 

movements [11], [12]. Eye-tracking has been utilized to evaluate the behaviors of individuals 

when they solve science problems [13]. In this study, a group of students is displayed multi-

choice problems in biology, chemistry, and physics. Eye-tracking data including the location of 

eye fixation on the computer screen, scan path, durations of fixation and between fixations are 

recorded when students solve problems. It was found that students with higher levels of a 

specific domain knowledge show quantifiably different eye-movement patterns from students 

who have lower-level knowledge in that specific domain. Moreover, eye-tracking data have been 

shown effective to distinguish students with different levels of expertise. Eye-tracking data such 

as fixation duration and the number of fixations are also used to study the role of diagrams in 

problem-solving [14]. Eye-tracking data analysis suggests that students split attentions between 

the diagram and text and tend to spend less time on the text. It is shown that the cognitive load is 

reduced when both formats are presented in problems and more cognitive resources are saved for 

further steps in problem-solving. All these research studies suggest that eye-tracking is effective 

in studying the problem-solving processes by revealing individuals’ cognitive activities. 

However, little has been done to quantify the problem-solving performance of individuals. 

Therefore, it is imperative to utilize data-driven analytics of eye-tracking data to evaluate and 

enhance problem-solving skills, especially in the engineering field. 

 

2.3 Quantification and Modeling of Problem-Solving 

Quantification and modeling of problem-solving skills can help in understanding how problem 

solvers analyze and solve the problems. This allows for developing effective strategies for 

teaching and enhancing problem-solving skills. A few studies discussed the development of 

models to quantify and understand problem-solving. For example, a study was conducted to 

model visual problem-solving as analogical reasoning [15]. The study developed a model based 

on comparing images via structure mapping which involves aligning the common relational 

structure in two images to identify commonalities and differences. It was found that the proposed 

model matches adult human performance and that problems which are difficult for the model are 

also difficult for people. In another study, a modeling approach was proposed to help students 

learn expert problem-solving [16]. The proposed approach allows modeling physics to be 

integrated into a typical introductory college mechanics course. A third study developed models 

of problem-solving to study children’s problem-solving process [17]. According to the study, the 

conception of modeling the problem-solving process could provide a unifying framework for 

thinking about problem-solving in children.  

 

In this research, we integrate eye-tracking and VR to collect data from participants during the 

problem-solving process. The collected data is used to develop models that allow for quantifying 

and understanding the behavior of problem solvers and how their performance is compared to 

experts. Performance measures are then developed to reflect the problem-solving skills. 

 



3. Research Methodology 

 

The proposed research methodology develops a VR learning factory to enhance student 

understanding of manufacturing concepts. Data-driven models are integrated with eye-tracking 

sensing to evaluate and enhance problem-solving skills of engineering students in the VR 

learning factory. As shown in Figure 1, a physical learning factory is first developed to simulate 

a manufacturing system where students can assemble physical car toys [18]. Second, a VR 

learning factory is developed to mimic the physical factory. Eye-tracking sensing is integrated 

with VR to record students’ eye movements during the problem-solving process. Third, problem-

solving skills of students are measured through eye-tracking data analytics. The analytical 

models are evaluated by comparison with a VR-based composite index which reveals the 

students’ assembly performance in the VR learning factory.  

    

 
Figure 1. Research methodology. 

 

3.1 VR Simulation of Learning Factory 

In this research, a VR learning factory as shown in Figure 2 is developed to help engineering 

students understand manufacturing concepts and processes and gain hands-on training. The VR 

learning factory was built in the Unity game engine and worked with the HTC Vive VR headset, 

wireless controllers, and base stations for navigation and motion tracking [18]. Through the 

headset, students were presented with a virtual factory with a series of workstations. They were 

able to interact with the virtual environment and objects with wireless controllers. 

 

To study the problem-solving of engineering students, we invited them to complete some 

assembly tasks. Assembly tasks given to students involved the assembly of car toys according to 

a set of customer requirements as shown in Figure 3. Students needed to minimize the total cost 

of car toy assembly while satisfying customer requirements. Hence, the assembly task consists of 

four main functions: design, sourcing, manufacturing, and inspection.  

 



 
Figure 2. Workstations in VR learning factory: (a) component selection station; (b) base station; 

(c) roof station. 

 

 
Figure 3. Examples of customer requirements for the car toy assembly. 

 

Once students entered the VR learning factory, audio instructions on how to interact with the 

virtual environment were presented to them. After learning about the instructions, students could 

press a button to start the car toy assembly. There are seven workstations in the VR learning 

factory. The requirement station is the first workstation where students were shown a set of 

customer requirements (see Figure 3). After understanding the customer requirements, students 

moved to a component selection station (see Figure 2 (a)) and selected components by pointing 

at them and pressing a button on the wireless controller. There are 8 colors to be selected for 

each component. Then, students could complete the assembly process by assembling base, axle, 

tire and rim, front and trunk, windshield, sides, and roof in subsequent workstations as shown in 

Figure 4. Students could switch between seven workstations during the assembly process. 

 

 
Figure 4. Processes for car toy assembly [19]. 



Eye-movement patterns including locations and number of fixations, saccades, and students’ 

choices of components were recorded along the assembly process. Data-driven models are 

incorporated with eye-movement patterns to analyze students’ problem-solving skills. For 

example, problem-solving skills are measured by the extent to which the eye-movement patterns 

of engineering students are similar to the pattern of an SME, a person who will set the expert 

criterion for the car toy assembly process. In our case, the instructor who led the development of 

the manufacturing simulations serves as SME. 

 

3.2 Mean Squared Error for Eye Gaze Heatmap Comparison 

Eye-tracking data generate compelling visualizations that are useful for the study of problem-

solving. An eye gaze heatmap, as one of the visualizations, is developed for each student and the 

SME based on the number of fixations that one looks at components in the component selection 

station. As shown in Figure 5, the red color represents a relatively large number of fixations, 

while the blue color represents a relatively small number of fixations. 

 

 
Figure 5. Eye gaze heatmaps developed based on the number of fixations on each component for 

every student and the SME. The red (or blue) color represents a relatively large (or small) 

number of fixations. (a) the eye gaze heatmap of a student; (b) the eye gaze heatmap of an SME. 

 

The comparison of eye gaze heatmaps between a student and the SME serves as one of the 

measures of engineering problem-solving skills. Mean squared error (MSE) is widely used for 

image comparison [20]. We use the eye gaze heatmap of an SME as the golden standard and 

compute MSE of all pixels on eye gaze heatmaps for each student in terms of RGB color as: 

 

𝑀𝑆𝐸 =  
1

𝑀 × 𝑁 × 3
∑ ∑[(𝑅𝑚𝑛 − 𝑅𝑚𝑛

′ )2 + (𝐺𝑚𝑛 − 𝐺𝑚𝑛
′ )2 + (𝐵𝑚𝑛 − 𝐵𝑚𝑛

′ )2]

𝑁

𝑛=1

𝑀

𝑚=1

 

 

where 𝑀 is the number of pixels along the horizontal axis, 𝑁 is the number of pixels on the 

vertical axis, 3 is the chromaticity number in an RGB color which are red, green, and blue, 𝑅𝑚𝑛, 

𝐺𝑚𝑛, and 𝐵𝑚𝑛 are the RGB color of each pixel on a student’s heatmap, 𝑅𝑚𝑛
′ , 𝐺𝑚𝑛

′ , and 𝐵𝑚𝑛
′  are 



the RGB color of each pixel on the SME’s heatmap. Examples of RGB colors of two pixels are 

as shown in Figure 5. MSE of the student in Figure 5 (a) is 5.56. 

 

3.3 Heterogeneous Recurrence Analysis of Scan Path and Pick Path 

A scan path and a pick path are generated based on the eye-tracking data of each student or the 

SME as shown in Figure 6. A scan path provides the path that a student or the SME scans as they 

view the component selection board. As shown in Figure 6 (a), the green dot represents the 

starting point where the student starts to scan, while the red dot is the endpoint of the scan path. 

On the other hand, a pick path is an ordered set of selected components. Similarly, in Figure 6 

(b), blue dot and red dot represent a starting point and an endpoint of the pick path, respectively. 

 

 
Figure 6. Scan path and pick path of a student: (a) scan path. Green and red dots represent 

starting and endpoints of the scan path, respectively; (b) pick path. Blue and red dots are starting 

and endpoints of the pick path, respectively. 

 

 
Figure 7. 28 states on the component selection board. 



The selection board in the component selection station is divided into 28 states, that is, each 

component represents a state as shown in Figure 7. A unique value of categorical variable 𝑘 is 

assigned to each state 𝑠(𝑛), 𝑘 ∈ {1, 2, … , 𝐾}. 𝐾 = 28 in this case. We obtain a sequence of 

categorical variables as one views the selection board. 

 

 
Figure 8. IFS plot of the scan path in Figure 6 (a). 

 

In this research, an iteration function system (IFS) is introduced to represent heterogeneous 

recurrences of the sequence of categorical variables [21] [22]. IFS maps each state 𝑠(𝑛) to a 

point [𝑐𝑥(𝑛), 𝑐𝑦(𝑛)] in the 2D coordinate system as: 

 

𝑠(𝑛) → 𝑘 ∈ {1,2, … , 𝐾} 

[
𝑐𝑥(𝑛)

𝑐𝑦(𝑛)
] = 𝜙 (𝑘, [

𝑐𝑥(𝑛 − 1)

𝑐𝑦(𝑛 − 1)
]) = [

𝛼 0
0 𝛼

] [
𝑐𝑥(𝑛 − 1)

𝑐𝑦(𝑛 − 1)
] + [

𝑐𝑜𝑠 (𝑘 ×
2𝜋 
𝐾

)

𝑠𝑖𝑛 (𝑘 ×
2𝜋 
𝐾

)
] 

 

where [𝑐𝑥(0)
𝑐𝑦(0)

] = [0
0
], 𝛼 is a control parameter that prevents overlaps of two states in the 2D graph. 

Figure 8 shows the recurrences of 28 states in the scan path of Figure 6 (a). This contractive 

mapping clusters all the states with the same categorical variable 𝑘 at local regions in the 2D 

graph. State 21, 22, 23, 24, 25, 26, and 27 are missing in Figure 8 because the numbers of 

fixations in these 7 states are 0, that is, the student did not look at components in 7 states. The 

zoomed-in Figure 8 represents transition sequences from all states to State 19. Note that 

transitions from State 1~7, 10~13, 15, 17, 18, 21~27 to State 19 are missing because the 

transition probabilities from these states to State 19 are zeros. 

 

We denote clustered states as heterogeneous recurrence sets, i.e., 𝑊𝑘1,𝑘2,…,𝑘𝑡
=

{𝜙(𝑘1|𝑘2, … , 𝑘𝑡): 𝑠(𝑛) → 𝑘1, 𝑠(𝑛 − 1) → 𝑘2, … , 𝑠(𝑛 − 𝑡 + 1) → 𝑘𝑡}, 𝑘1, 𝑘2, … , 𝑘𝑡 ∈ {1,2, … , 𝐾}. 

Furthermore, we extract 3 quantifiers, i.e., heterogeneous recurrence rate (HRR), heterogeneous 

mean (HMean), and heterogeneous entropy (HENT) from the heterogeneous recurrence set 

𝑊𝑘1,𝑘2,…,𝑘𝑡
 [23]. 3 heterogeneous recurrence quantifiers are defined based on the recurrence set 

𝑊𝑘1,𝑘2,…,𝑘𝑡
. 



 

HRR measures the percentage of recurrences within the set 𝑊𝑘1,𝑘2,…,𝑘𝑡
: 

 

𝐻𝑅𝑅 = (
�̿�𝑘1,𝑘2,…,𝑘𝑡

𝑁
)

2

 

 

where �̿�𝑘1,𝑘2,…,𝑘𝑡
 denotes the cardinality of set 𝑊𝑘1,𝑘2,…,𝑘𝑡

, 𝑁 is the total number of states in the 

state transition process. 

 

Recurrence set 𝑊𝑘1,𝑘2,…,𝑘𝑡
 involves the same t-state sequence that is clustered at local regions in 

Figure 8. But addresses of t-state sequences in the set 𝑊𝑘1,𝑘2,…,𝑘𝑡
 are not exactly the same and are 

distributed in the local region. Thus, a distance matrix in the set is computed as: 

 

𝐷𝑘1,𝑘2,…,𝑘𝑡
(𝑖, 𝑗) = ‖𝜙𝑖 − 𝜙𝑗‖ 

𝜙𝑖 , 𝜙𝑗 ∈ 𝑊𝑘1,𝑘2,…,𝑘𝑡
;      𝑖, 𝑗 = 1,2, … , �̿�;      𝑖 < 𝑗 

 

where 𝜙𝑖 𝑎𝑛𝑑 𝜙𝑗 are the 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ elements in the set  𝑊𝑘1,𝑘2,…,𝑘𝑡
. HMean is defined as the 

average distance of 𝐷𝑘1,𝑘2,…,𝑘𝑡
 to measure the average distance among states in the set 𝑊𝑘1,𝑘2,…,𝑘𝑡

: 

 

𝐻𝑀𝑒𝑎𝑛 =
2

�̿�(�̿� − 1)
∑ ∑ 𝐷𝑘1,𝑘2,…,𝑘𝑡

(𝑖, 𝑗)

�̿�

𝑗=𝑖+1

�̿�

𝑖=1

 

 

The distance matrix 𝐷𝑘1,𝑘2,…,𝑘𝑡
(𝑖, 𝑗) is divided into 𝐵 equal bins from 0 to max (𝐷) and the 

probability is computed as: 

 

𝑝(𝑏) =
1

�̿�(�̿� − 1)
# {

𝑏 − 1

𝐵
max(𝐷) < 𝐷𝑘1,𝑘2,…,𝑘𝑡

(𝑖, 𝑗) ≤
𝑏

𝐵
max(𝐷)} ,         𝑏 = 1,2, … , 𝐵 

 

HENT is defined as the Shannon entropy of the probability distribution of 𝐷𝑘1,𝑘2,…,𝑘𝑡
(𝑖, 𝑗) and 

describes the uncertainty in the recurrence of a t-state sequence:  

 

𝐻𝐸𝑁𝑇 = − ∑ 𝑝(𝑏)ln𝑝(𝑏)

𝐵

𝑏=1

 

 

4. Experimental Results 

 

There were 25 participants including 24 students and 1 SME in the experiment. All 24 students 

were undergraduate engineering students. The average age was around 18. We recorded their 

eye-tracking data while assembling car toys in the VR learning factory. A synthesized quantifier 

was developed to combine 7 quantifiers extracted from eye-tracking data, i.e., MSE of heatmap, 

HRRs, HENTs, and HMeans of scan path and pick path. Meanwhile, to validate the effectiveness 

of the synthesized quantifier in measuring problem-solving skills, a VR-based composite index 



was designed to serve as the ground truth of students’ assembly performance in the VR learning 

factory. The protocol for the simulation experiments was reviewed and approved by the 

university’s Office for Research Protections (IRB #: STUDY00009232). 

 

4.1 VR-based Composite Index 

The VR-based composite index is formulated based on scores of cycle time, number of station 

switches, weight, price, and quality of the car toy. The highest score of car toy quality is 10. 

Starting from 10 points, each violation of customer requirement deducts 1 point from 10 points. 

For example, if a student does not assemble small soft tires, the student will lose 1 point and the 

score of car toy quality will be 9. A car toy obtains a score of 2 for its weight or price when the 

weight or price requirement is satisfied, otherwise, the score for weight or price is 1. A long 

cycle time or a large number of station switches usually results in unsatisfactory assembly 

performance. Therefore, scores of the cycle time and the number of station switches are 

formulated according to the reverse scaling. Scores of the cycle time and the number of station 

switches are formulated as: 

 

Time Scorel =  
max(𝐂𝐓) − CTl

max(𝐂𝐓) − min (𝐂𝐓)
× 10 

 

Switch Scorel =  
max(𝐧𝐒𝐰𝐢𝐭𝐜𝐡) − nSwitchl

max(𝐧𝐒𝐰𝐢𝐭𝐜𝐡) − min (𝐧𝐒𝐰𝐢𝐭𝐜𝐡)
× 10 

 

where Time Scorel and Switch Scorel denote scores of the cycle time and the number of station 

switches of lth participant, l = 1, 2, … , L, 𝐂𝐓 is the cycle time set {CT1, CT2, … , CTL}, 𝐧𝐒𝐰𝐢𝐭𝐜𝐡 is 

the set of numbers of station switches {nSwitch1, nSwitch2, … , nSwitchL}. 

 

 
Figure 9. VR-based composite index represented by the red area in each spider chart which 

involves cycle time, the number of station switches, price, weight, and quality of the car toy. (a) 

VR-based composite index of SME; (b) an example of high VR-based composite index; (c) an 

example of low VR-based composite index. 



 

Red areas in spider charts as shown in Figure 9 are values of VR-based composite indices. The 

highest VR-based composite index is 85.60 and belongs to the SME. This is because SME has 

full scores on all 5 axes. Examples of high and low VR-based composite indices are 

demonstrated in Figure 9 (b) and (c), respectively. 

 

4.2 Synthesized Quantifier 

In the design of synthesized quantifier, we first compute correlation coefficients between VR-

based composite index and seven quantifiers which are summarized in Table 1. According to the 

correlation coefficients, MSE of heatmaps, HENT and HMean of scan path, HENT and HMean of 

pick path have negative correlations with VR-based composite index, which suggests the assembly 

performance decreases as these 5 quantifiers increase; HRR of scan path and HRR of pick path 

have positive correlations with VR-based composite index, suggesting larger values of these 2 

quantifiers represent a better assembly performance. Therefore, HRR of scan path and HRR of 

pick path are normally scaled to range [0, 6], while MSE of heatmaps, HENT and HMean of scan 

path, HENT and HMean of pick path are reversely scaled to [0, 6]. 

 

Table 1. Correlation coefficients between VR-based composite index and the seven quantifiers. 

 
MSE of 

heatmap 

Scan Path Pick Path 

HRR HENT HMean HRR HENT HMean 

Correlation Coefficient 

between VR-based 

Composite Index and 

Each Quantifier 

-0.34 0.13 -0.57 -0.07 0.08 -0.41 -0.50 

 

 
Figure 10. Synthesized quantifier represented by the blue area in the spider chart which 

combines MSE of heatmap, HRRs, HENTs, and HMeans of scan path and pick path. 

 

A blue spider chart is designed to combine 7 quantifiers including MSE of heatmap, HRRs, 

HENTs, and HMeans of scan path and pick path as shown in Figure 10. The blue area in the 

spider chart is the value of synthesized quantifier. Further, the correlation coefficient between 



VR-based composite indices and synthesized quantifiers of all 25 participants is computed as 

0.56. It is noted that the upper bound of this correlation coefficient for a 99% confidence interval 

is 0.83. 

 

4.3 Insights from the Analysis 

According to the interpretation of correlation coefficients [24], a correlation coefficient of 0.56 

with a 99% confidence interval upper bound of 0.83 demonstrates there is a strong correlation 

between the synthesized quantifier and VR-based composite index, that is, the proposed 

synthesized quantifier is effective to quantify students’ engineering problem-solving skills in the 

VR learning factory. There might also be a potential nonlinear correlation between the 

synthesized quantifier and composite index which needs further investigation in the future work. 

On the other hand, this VR learning factory provides an advantageous environment for 

engineering students to enhance their problem-solving skills. For example, students can learn 

which are the necessary components they need to focus on and how to optimize the assembly 

process by observing an SME’s behavior.  

 

5. Integration into Manufacturing Courses 

 

5.1 Laboratory Demonstration  

The laboratory demonstration is a recognized technique in engineering education as it enhances 

the students’ practical knowledge and allows students to investigate and solve real-world 

engineering problems [25]. VR learning factory, as a flexible tool that can provide state-of-the-

art manufacturing systems and technologies as well as hands-on experiences to students, is 

imperative to be integrated into manufacturing curriculums. The availability of VR learning 

factory provides a new immersive environment to promote critical thinking, creativity, and 

collaborations among students. The proposed VR learning factory has been integrated into an 

undergraduate manufacturing systems course offered to Industrial Engineering students. Hands-

on labs on both physical and VR simulations were developed. Figure 11 shows sample pictures 

from the physical simulation activities. Figure 12 shows sample pictures from the VR 

simulations. 

 

   
(a) (b) (c) 

 
Figure 11.  Sample pictures from the physical simulations: (a) student participants using physical 

simulation to complete the production process, (b) inspection, (c) finished goods inventory [18]. 

 



 
(a) 

 
(b) 

 
(c) 

Figure 12.  Sample pictures from the simulations: (a) student participants using VR simulation, 

(b) sample car toy from the VR simulation, (c) sample car toy from the physical simulation [19]. 

 

5.2 Engineering Examination 

Written exams are commonly used in manufacturing curriculums to test students’ knowledge of 

manufacturing concepts and their ability to solve problems. However, good grades in exams do 

not sufficiently show if students have acquired manufacturing knowledge, because current exams 

usually test memory more than students’ skills in solving real-world problems. Therefore, it is 

preferable to incorporate a VR learning factory with eye-tracking data analytics in the 

examination of manufacturing curriculums. For instance, an assessment can ask students to 

complete a certain project in a VR learning factory while at the same time recording their eye-

tracking data working on the project. Evaluations can be based on the students’ problem-solving 

performance in the project which is measured by the VR-based composite index as well as 

results of eye-tracking data analysis, that is, the synthesized quantifier developed in this research, 

as eye-tracking data are useful to reveal cognitive processes while students solving problems. 

Manufacturing knowledge questions can also be incorporated into the VR simulations and 

students can be asked to answer these questions in the VR environment once they finish the 

simulation activity. 

 

6. Future Plans 

 

In this research, the VR learning factory is designed mainly for a single player to gain hands-on 

manufacturing training. The single player simulation represents the craft manufacturing 

paradigm in which skilled workers, using general-purpose machines, make exactly the product 

the customer paid for; one at a time. Future work will focus on developing a VR learning factory 

that expands the VR simulations to other manufacturing paradigms and provide hands-on 

training for multiplayers as shown in Figure 13. The multiplayer VR learning factory comes with 

complex processes in 5 paradigms of advanced manufacturing: craft production, mass 

production, lean manufacturing, mass customization, and personalized production. Moreover, 

digital twins will be integrated with the multiplayer VR factory. This VR learning factory is 

composed of six rooms, one for each manufacturing paradigm and one for the inventory of 

products. The VR learning factory is aimed at enhancing advanced manufacturing training and 

facilitating collaborations through a shared visualization for both students and practitioners. 

Furthermore, eye-tracking sensing technology and artificial intelligence (AI) will be utilized for 

the data collection and modeling of users’ behavior. The multiplayer VR learning factory will 

also allow for studying communication and teamwork in virtual teams as well as how students 

solve problems collaboratively. 



 
Figure 13. Snapshots of multiplayer VR learning factory for advanced manufacturing. 

 

7. Conclusions 

 

In this research, we developed a VR learning factory to mimic physical learning factories. 

Further, data-driven models are integrated with eye-tracking sensing to evaluate and enhance 

problem-solving skills of engineering students in a VR learning factory. First, a single-player 

learning factory is simulated in a VR game environment. Second, engineering students are asked 

to assemble car toys that satisfy customer requirements in the virtual environment. In the 

meantime, their eye-tracking data are recorded during the assembly process. Third, we developed 

data-driven models to analyze the eye-tracking data of students, thereby evaluating and 

enhancing their problem-solving skills when facing real-world engineering problems. 

 

Experimental results showed that the proposed synthesized quantifier is effective to quantify 

problem-solving skills of engineering students due to its strong correlation with VR-based 

composite index which serves as the ground truth of students’ assembly performance. The 

synthesized quantifier has strong potentials to be incorporated into engineering examinations as 

it is useful to reveal cognitive processes while students solving problems. Also, the VR learning 

factory can be utilized in the laboratory demonstration of manufacturing curriculums because it 

is flexible to provide hands-on training to students in the state-of-the-art manufacturing systems 

and technologies. The shared visualization in VR environment can facilitate collaborations 

among students. 

 

Built upon the single-player VR learning factory, our future work will focus on the design of a 

multiplayer VR learning factory. The multiplayer VR learning factory is aimed at enhancing 

advanced manufacturing training and facilitating collaborations for both students and 

practitioners. The richness of the collected sensing data from students allows for the modeling of 



human behavior through machine learning techniques, and enables us to discover common trends 

in the students’ learning and problem-solving process. 
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