
Enhancing MCTS with Convolutional Autoencoder and Linear
Approximator in XCOM-Inspired Environments

Yiwei Zhang
1,2 and Richard Zhao

2

1 Beijing Normal University, Beijing, China.
2 University of Calgary, Calgary, Alberta, Canada.

Abstract
Monte Carlo Tree Search is a widely acknowledged algorithm with video games being a

common application. While MCTS has seen various enhancements, its integration with

temporal difference learning (TD learning) in complex search environments still has interesting

research potential. This paper introduces a novel method, Conv-AE+FA, merging convolutional

autoencoders with a linear function approximator, to optimize game states. Applied to a game

setting inspired by the commercial game XCOM, our study not only delves into the use of TD

learning for guiding MCTS but also underscores the improved guidance in the MCTS search

achieved by the use of convolutional autoencoders with linear approximation.

Keywords 1
MCTS, TD Learning, Convolutional Autoencoder, Linear Function Approximation

1. Introduction

Monte Carlo Tree Search (MCTS) has gained

extensive recognition in the realm of artificial

intelligence (AI) for its proficiency as an efficient,

any-time search algorithm. Its applications stretch

across numerous sectors, with video games

standing out as one of the most prominent areas of

usage. Over the years, the academic and scientific

community has proposed a plethora of

advancements to enhance the efficacy of MCTS,

including the proposition to combine the benefits

of MCTS with reinforcement learning, paving the

way for a more robust, adaptable, and intelligent

search mechanism.

Continuing the pursuit of refining MCTS,

various improvements have been proposed [1].

Temporal difference (TD) learning has emerged

as a noteworthy strategy to guide the search

process. However, as the game environment

becomes progressively more complicated, the

utility of TD learning begins to wane. This paper

AIIDE Workshop on Experimental Artificial Intelligence in

Games (EXAG), October 08, 2023, University of Utah, Salt Lake
City, Utah, USA.

EMAIL: yiweizh@mail.bnu.edu.cn (Yiwei Zhang);

richard.zhao1@ucalgary.ca (Richard Zhao).
ORCID: 0000-0001-8257-4291 (Richard Zhao).

Copyright © 2023 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

ventures into an innovative approach, deploying

convolutional autoencoders in conjunction with a

linear function approximator to generalize game

states in TD learning, thus potentially overcoming

its limitations in complex settings. We apply this

novel approach to a game environment inspired

by the commercial turn-based strategy game

XCOM. XCOM provides an easy-to-define and

versatile environment for comparing AI

techniques, and improvements on its AI can be

transferred to other domains of a similar nature.

This paper presents the following

contributions:

1. An exploration of TD learning as a partial

guidance to MCTS, in an environment

inspired by a commercial game.

2. A demonstration of the effectiveness of

combining a convolutional autoencoder

and a linear function approximator in

enhancing the guidance in the MCTS

search process.

2. Related Works

The application of AI techniques to gaming

can be seen through many different methods,

including search, planning, and learning

strategies. One such method, MCTS, has been

regularly investigated within the realm of AI

game playing. Coulom [3] pioneered the

integration of Monte Carlo evaluation with tree

search, culminating in the development of the

MCTS algorithm. The Upper Confidence Bounds

Applied to Trees (UCT) algorithm was introduced

by Kocsis and Szepesvári [6], serving as a variant

of the MCTS algorithm. This variant employs a

selection policy rooted in the Upper Confidence

Bound (UCB) formula to strike an optimal

balance between exploration and exploitation

within the search tree. The UCT algorithm has

demonstrated significant success across diverse

domains, inclusive of game playing, planning, and

optimization problems [14]. In the context of

narrow tactical lines in sudden-death games such

as Lines of Action (LOA), an MCTS offshoot,

MCTS Solver, has been developed [17]. Research

has also been conducted into the effective

application of MCTS in classic and modern board

games as well as video games [2].

In reinforcement learning (RL), TD learning

represents a frequently employed method for

modifying the value function estimation

associated with a state or action, predicated on the

perceived reward and the projected value of the

succeeding state or action. TD-Gammon

famously applied TD learning to the game of

Backgammon [15]. The integration of TD

learning with function approximation techniques

is a common practice in estimating value

functions for expansive state or action spaces [14].

Combining MCTS and RL can produce

powerful algorithms. AlphaGo inspired many

approaches in this area [13]. One strategy involves

employing RL to acquire a heuristic evaluation

function that directs MCTS toward the more

fruitful sections of the game tree. Alternatively,

RL can be used to ascertain the value of nodes

within the tree, a technique that facilitates the

pruning of the tree and focuses the search on more

advantageous branches [16].These methodologies

have found successful application in a number of

games [3].

More recently, Saadat and Zhao [10] presented

the online MCST-TD algorithm, combining TD

learning with MCTS by using TD learning to learn

values of states online, and concurrently, using

current estimated state values to provide partial

guidance to MCTS to enable MCTS to adapt to

specific opponent strategies. While the authors

showed that this adaptation can happen quickly on

a small test environment of a 6 by 6 game board,

its effectives was unclear on larger environments.

Autoencoders are no strangers to game AI

research. Jain et al. [5] used autoencoders in game

content generation, recognition and repair. Sarkar

et al. [11] used variational autoencoders to

generate levels in the style of existing games and

blending levels across different games. Mak et al.

[8] used autoencoders in aiding game design by

generating game maps and avatars. Seth et al. [12]

deployed adversarial autoencoders to identify

players with irresponsible behaviors. Our work

aims to explore the use of autoencoders,

specifically convolutional autoencoders, in

providing a better state representation for TD

learning.

3. Descriptions of XCOM and XCOM-
Inspired Environments

XCOM is a series of renowned turn-based

tactical decision-making video games. In 1994,

MicroProse released the first version under the

initial title "UFO: Enemy Unknown." Over the

years, many sequels have been released, including

"XCOM: Enemy Unknown" in 2012, "XCOM 2"

in 2016, and "XCOM: Chimera Squad" in 2020.

Players assume the role of a commander of an

international organization, defending against alien

invasions and battling alien troops. This

commercially successful game series has garnered

high acclaim due to its interactive narratives,

impeccable combat scenarios, and emergent

strategic gameplay. Beyond entertainment,

XCOM also serves as a context for academic

research. Given its emphasis on positional play

strategy and tactics, XCOM is an excellent

platform to study how adaptive AI decision-

making systems evaluate the game state and select

actions in complex and uncertain conditions.

Past researchers [10] tested their work on

miniXCOM, a simplified environment inspired by

XCOM. In this work, we recreated the

miniXCOM environment (Figure 1), but also a

much larger environment that is roughly

equivalent in complexity to an actual map in an

XCOM game (Figure 2). We called these XCOM-

Inspired Environments. The large board has a

dimension of 18 by 18, with 4 squad members on

each side. The layout of this board is inspired by

the actual first level of XCOM2, where the

playable area is roughly 20 by 18. We modified

the area to be symmetrical on both sides to

provide a fair testing environment.

Each map is represented by a grid and has

walls that can be viewed as barriers or covers. We

use a two-dimensional array to represent the board.

Each grid block is assigned a specific value

according to its state. For an empty block, it is 0.

A wall block is -2. The block value is 1 when it is

occupied by a human squad member. Conversely,

the block is -1 when it has an alien squad member.

With these four different values, the 2D array is

able to represent all possible states on the game

board. Moreover, there are two AI agents: the

human squad and the alien squad. Each squad has

several members. They have three different types

of actions, which are controlled by various AI

systems. Squad members are able to move on the

board, shoot the uncovered enemy and execute

move and shoot in a sequence if they can find an

uncovered enemy after choosing a move

destination. In each turn, agent can only issue one

command to one member in its squad.

• Move action: Every squad member has

four directions to choose: Up, Down, Left, and

Right. Moving one block in a certain direction

costs one step. A parameter called Max-Move

stipulates the maximum moving steps in each

turn. Humans and aliens cannot move onto the

wall. For the mini board, Max-Move is 4. For

the large board, Max-Move is 6.

• Shoot action: In each turn, every squad

member can shoot at most one opponent and

kill it immediately as long as there are no walls

between them. From a mathematical

perspective, a line is drawn between the squad

member and target opponent. If this line does

not intersect any walls, the enemy is uncovered

and the squad member can shoot it

successfully.

These two agents continually make decisions

and execute actions until all opposing squad

members are eliminated, enabling them to win the

game. The simulated XCOM game provides an

ideal scenario for conducting our experiments and

comparing various decision-making algorithms.

4. Methodology

This section explains the different techniques

involved in the current research, and how they

each contribute to the combined method of Conv-

AE+FA, the proposed novel method at playing the

XCOM-Inspired Environments.

Figure 1: Mini game board setup [10].

Figure 2: Large game board setup we used in our
experiments, adapted from the first map of
XCOM2.

4.1. MCTS and UCT

MCTS is a heuristic tree search algorithm

designed to identify the optimal move by

iteratively constructing a game tree, utilizing

rollouts evaluation and selective search. This

method involves simulating numerous game

terminations from a designated state, recording

the outcomes, and subsequently exploring the

game tree to enhance the decision-making

mechanism. This process encompasses four

iterative phases: Selection, Expansion, Simulation,

and Backpropagation.

1. Selection: According to a specific

selection rule, the algorithm chooses the best

child as expansion node until the child node is

unexplored or it is a terminal state.

2. Expansion: the chosen node is added in

the game tree if it has some unexplored actions.

3. Simulation: This step starts from the

expanded node. For each rollout, it repeats to

play a move according to a fixed rollout policy

until terminal state and records the result.

4. Backpropagation: Back up process

changes the attributes of the selected

simulation node based on the result, such as

increasing the number of visits and updating

the node value estimate.

UCT is a type of selection rule in MCTS. It

helps MCTS manage the trade-off between the

exploration of new nodes and exploitation of

known paths. Formula (1) shows how to calculate

the UCT value.

𝑈𝐶𝑇 =
𝑄(𝑣′)

𝑁(𝑣′)
 + 𝐶 √

2 𝑙𝑛 𝑁(𝑣)

𝑁(𝑣′)
 (1)

𝑣’ is one of the children of the node 𝑣. 𝑄(𝑣) is

the total reward of node 𝑣. 𝑁(𝑣) is the number of

being visited of node 𝑣. 𝐶 is a constant number to

control the rate of exploration. The node with

largest UCT value will be selected to expand in

the next step.

In general, with the UCT selection policy,

MCTS can concentrate on promising parts of the

game tree and has an overview of search horizon

compared to some other search methods based on

alpha-beta search.

4.2. Convolutional Autoencoder

Convolutional neural network (CNN) [7] is a

deep, feed-forward artificial neural network

effective for processing grid-like data, such as

pattern recognition and feature learning for high-

dimension images. There are three major layers in

a classical CNN architecture, which imitates the

structure of human brains to extract spatial

features from input data: convolutional layer,

pooling layer, and fully connected layer.

 Convolutional layers encompass numerous

small learnable filters, interchangeably referred to

as kernels. The filters traverse the image in

alignment with a predefined stride and a two-

dimensional feature map emerges, encapsulating

abstracted features derived from the primary input

data. The purpose of the pooling layer is to reduce

spatial dimensions, thereby mitigating the risk of

overfitting while reinforcing the extracted

features. The fully connected layer yields a linear

output, transforming the multidimensional

features derived from preceding layers into an n-

by-1 vector. In our work, we use this output as a

representation of our game states.

An autoencoder [4] is an unsupervised

learning algorithm designed for many tasks such

as feature extraction and data generation. This

algorithm compresses input data and reconstructs

them. An autoencoder approach fundamentally

consists of two primary components, an encoder

and a decoder. The encoder and the decoder are

learnable artificial neural networks. Figure 3

shows an autoencoder.

Encoder 𝑓𝜃 : ℝ𝑚 → ℝ𝑘 maps input 𝑋 into

compressed representation 𝑍.

Decoder 𝑔𝜙: ℝ𝑘 → ℝ𝑚 maps representation 𝑍

into reconstruction 𝑋̂. (Usually, 𝑘 ≪ 𝑚.)

We utilize certain objective functions, like

mean square loss, to update the encoder and

decoder. Formula (2) implies that the ideal

encoder and decoder should be the pair that

reduces the discrepancy between the input data

and the reconstructed data to the minimum.

The optimization formula:

𝜃𝑒𝑛𝑐 , 𝜙𝑑𝑒𝑐 = argmin
Θ,Φ

1

𝑁
∑ ‖𝑥𝑖 − 𝑔𝜙(𝑓𝜃(𝑥))

𝑖
‖

2

2
𝑁

𝑖=1

 (2)

Upon completion of training, when feeding a

real game state 𝑥 into the encoder, it yields a

compressed data output known as the feature

vector, which is beneficial for our downstream

tasks.

A convolutional autoencoder [9] combines the

strengths of CNNs and autoencoders to learn

hierarchical representations of input data. It

leverages the power of extracting features from

images and the capability to train an image feature

extractor without labels. In our XCOM-Inspired

Environments, the game board can be viewed as

an image composed of four different pixel types

so it is a suitable environment to utilize a CNN for

analyzing the game board image. The logic of a

convolutional autoencoder mirrors that of the

standard autoencoder: making the reconstruction

data 𝑋̂ closely resemble to original input 𝑋 after

passing through entire autoencoder architecture.

Figure 3: Structure of an autoencoder.

The major distinction from a standard

autoencoder lies on the application of CNNs as the

mapping function 𝑓𝜃 for the encoder and

transposed CNNs as the function 𝑔𝜙 for the

decoder. We show the details of the encoder and

decoder in Tables 1 and 2.

Table 1
Details of Convolutional Autoencoder-Mini.
Other parameters: 𝑁1 = 16 , 𝑁2 = 8 ,
num_feature = 6.

Layer Type Kernel Stride Padding Output-
Padding

1
2
3
4
5
6

Conv1
Max-Pool1

Conv2
Max-Pool2
TransConv1
TransConv2

3
2
3
2
3
3

1
2
1
1
2
2

1
0
1
0
1
1

NA
NA
NA
NA
0
1

Table 2
Details of Convolutional Autoencoder-Large.
Other parameters: 𝑁1 = 8 , 𝑁2 = 16 ,
num_feature = 10.

Layer Type Kernel Stride Padding

1
2
3
4
5
6
7

Conv1
Max-Pool1

Conv2
Max-Pool2
TransConv1
TransConv2
TransConv3

3
2
3
2
2
2
3

1
2
1
2
2
2
1

1
0
1
0
0
0
0

4.3. Linear Function Approximation

TD learning aims to get an optimal policy and

guide the AI agent by learning the value function.

When using function approximation for the value

function, the approximator provide a value

estimate for each state. We use the state values

determined by the function approximator to assist

in selecting the best node in the MCTS algorithm.

Function approximation is often used to handle

reinforcement learning problems with large or

continuous states, as tabular methods are

impractical to assess the value of each state. We

used a linear function approximator so that TD

learning can still retain the property of online real-

time learning.

The diagram showing the entire process used

by Conv-AE+FA is illustrated in Figure 4. We re-

scale the features extracted by autoencoder

through Z-score normalization. Linear function

approximation represents the value function with

a linear combination of weights and transformed

features. Instead of updating a separate value

estimate for each state as in tabular TD learning,

the agent learns a weight vector. Formula (3)

shows that when we feed the game state matrix

into the encoder of the trained convolutional

autoencoder, the compressed data is viewed as the

feature vector representing the state.
 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑆𝑡𝑎𝑡𝑒) = 𝒙(𝑆)

= [𝑥1(𝑆) 𝑥2(𝑆) ⋯ 𝑥𝑛(𝑆)] (3)

Figure 4: Structure of Conv-AE+FA: Convolutional Autoencoder and Linear Function Approximator

The estimated value of a state is given by the dot

product of weights and the feature vector.

The TD learning method updates the

parameter vector based on the observed TD error,

which shows in the Formula (4).

𝒘 ← 𝒘 + 𝛼(𝑅 + 𝛾 𝑣̂(𝑆′, 𝒘) − 𝑣̂(𝑆, 𝒘))𝒙(𝑆) (4)

𝑆 is current state and 𝑆′ is the next state. 𝑅 is

the reward for state. 𝛼 is the learning rate and 𝛾 is

the discount factor. The weight vector is updated

to minimize this TD error, effectively learning a

value function that can generalize from seen states

to unseen states based on their features.

After getting the estimate of the game states,

we add this value into the UCT formula used by

MCTS as in Formula (5).

𝑄(𝑣′)

𝑁(𝑣′)
 + 𝐶 √

2 𝑙𝑛 𝑁(𝑣)

𝑁(𝑣′)
 + 𝑣̂(𝑆, 𝒘) (5)

The selection of nodes in MCTS is partially

guided by the added term of 𝑣̂(𝑆, 𝒘) , which

represents state information.

5. Experiments

We conducted experiments on both the 6×6

mini board and our larger 18×18 board in the

XCOM-Inspired Environments. The 6×6 mini

board has two squad members on each side where

as the 18×18 board has four squad members on

each side, resulting in a much larger state space.

5.1. Dataset and Training

To train the convolutional autoencoder, a large

dataset is required. All training samples should

simulate real game states so that the autoencoder

can learn useful features. We created two datasets

for the two board sizes. The mini-dataset has

10,000 samples on the 6×6 mini board and the

large-dataset has 60,000 samples on the 18×18

large board. Considering that actual game states

include varying numbers of humans and aliens,

we generate all possible scenarios. Humans and

aliens are all randomly generated on the game

board while ensuring they cannot attack each

other. Tables 3 and 4 illustrate the distribution of

volumes for different combinations of humans

and aliens.

We used the Adam optimizer with learning

rate 0.001. After 10 epochs, the loss function

converged and we saved the parameters of the

encoder for use in the MCTS process.

Table 3
A total of 10,000 mini boards are generated
randomly with the following distribution of
numbers of humans and aliens.

 Alien: 1 2

Human: 1 1500 2000

2 2000 4500

Table 4
A total of 60,000 large boards are generated
randomly with the following distribution of
numbers of humans and aliens.

 Alien: 1 2 3 4

Human: 1 3500 2500 2000 1500

2 5500 5500 3500 3500

3 3500 3500 4500 4500

4 3500 3500 3500 6000

5.2. Experiment Details

We conducted six experiments, three on the

mini board and three on the large board. We

compared our proposed approach, MCTS with

Conv-AE and linear function approximation

(Conv-AE+FA) with other methods. The

opponents are, respectively: MCTS (baseline),

MCTS-TD, and MCTS with manually extracted

features and linear function approximation

(MF+FA). We set a fixed limit on the number of

iterations the algorithm can perform and stop the

search once this limit is reached. The limit is 100

in our experiments.

For the approach with manually extracted

features, we would like to measure the

effectiveness of feature extraction from Conv-AE

against features chosen manually based on human

knowledge. We hypothesize that there may be

many drawbacks with manually choosing features.

Despite human knowledge, it is difficult to

determine whether the chosen features are

sufficient for the problem. Based on the expertise

of a player of the XCOM games, we created five

features: the number of the humans and aliens, the

number of possible actions and the number of

rows occupied by humans and aliens. These

features together present the distribution of

humans and aliens.

In each experiment, a single run comprises a

total of 40 game rounds. We grouped the results

after every 10 rounds, partitioning each run into

four segments. For the mini board, we conducted

20 runs of 40 rounds and averaged the results. For

the large board, we conducted 10 runs. In the

interest of fairness, humans and aliens alternate in

initiating the first action. During each run, humans

take the first move in 20 rounds, while in the

remaining rounds, the aliens act first. A game

round concludes in a draw if neither squad

achieves victory following 25 moves. For

function approximation, the weight vectors are

randomly initialized between 0 and 1 at the

beginning of each run. The details of

hyperparameters are in Table 5. Shooting an

enemy produces a reward of 10 to the agent and a

reward of -10 to the opponent. The reward for the

action to move is 0.

Table 5
Parameter values used in the experiments.

Parameters Mini
board

Large
board

Learning rate 0.1 0.1

Exploration factor 1 √2⁄ 1 √2⁄
Number of features
(generated by Conv-

AE)

6 10

Number of features
(designed manually)

5 5

5.3. Mini Board Results

Figure 5 shows the results of Conv-AE+FA vs.

MCTS on the mini board. The error bars represent

1 standard deviation. Conv-AE+FA held an

advantage over MCTS in every 10 rounds

(statistically significant at 95% confidence at 20

rounds and beyond, using paired two-tailed t-

tests). As the weight vector updates, Conv-

AE+FA adapts to the opponent and becomes

stronger.

Figure 6 shows the results of Conv-AE+FA

vs. MCTS-TD. Since MCTS-TD is also an

adaptive algorithm, it performed better than

MCTS against Conv-AE+FA. Conv-AE+FA

provides state information of the entire game

board while in past work [10], MCTS-TD only

represented the state by a 3 by 3 grid centered

around the current location of an agent (to reduce

state space). Conv-AE+FA outperformed MCTS-

TD and the results are statistically significant at

95% confidence at 30 rounds and beyond.

Figure 7 shows the results of Conv-AE+FA vs.

MF+FA (Manual Features and Function

Approximation). Although manual features also

contain state information of the entire game board,

it remains uncertain whether the information is

Figure 5: Conv-AE+FA compared to MCTS on
mini board.

Figure 6: Conv-AE+FA compared to MCTS-TD
on mini board.

Figure 7: Conv-AE+FA compared to MF+FA on
mini board.

diverse and beneficial for our decision-making

process. Consequently, Conv-AE+FA

demonstrated superior performance over MF+FA

and the results are statistically significant at 95%

confidence at 30 rounds and beyond.

5.4. Large Board Results

Figure 8 shows the results of Conv-AE+FA

vs. MCTS on the large board. Conv-AE+FA

holds a larger advantage over MCTS in every 10

rounds. The winning rate is higher compared to

the mini board. This show that in a more complex

environment, CNNs improve the ability to

analyze the game state, extract hierarchical

features and provide enhanced guidance to

MCTS.

Figure 9 shows the results of Conv-AE+FA

vs. MCTS-TD on the large board. Compared to

the experiments on the mini board, our approach

has an obvious advantage over MCTS-TD

because linear function approximation is more

scalable to high-dimensional state spaces. It

generalizes across states based on their features,

which can be a more efficient representation.

MCTS-TD with a 3-by-3 local grid representation

cannot obtain important information of current

state beyond its immediate neighbors.

Figure 10 shows the results of Conv-AE+FA

vs. MF+FA (Manual Features and Function

Approximation) on the large board. Compared to

the experiments on mini board, our approach has

an obvious advantage. Convolutional

autoencoders are capable of learning a hierarchy

of features due to their deep, layered structure.

Conv-AE automatically learns to extract features

that are useful for reconstruction, which can also

be useful for other tasks. Table 6 shows the

combined results for a clearer comparison. All

results shown in Table 6 are statistically

significant using paired two-tailed t-tests at 95%

confidence level.

5.5. Discussions

 According to the description of the

experiments, the human squad is always the

proposed algorithm while alien squad has three

different techniques. To provide contrast for the

effects of these three techniques, we include a

ratio comparison graph. As shown in Formula (6),

Figure 8: Conv-AE+FA compared to MCTS on
the large board.

Figure 10: Conv-AE+FA compared to MF+FA on the
large board.

Figure 9: Conv-AE+FA compared to MCTS-TD on
the large board.

the ratio for each technique is determined by

dividing the winning number of the alien squad,

indicative of the efficacy of the compared

technique, by the winning number of the human

squad representing the performance of our

proposed Conv-AE+FA technique.

𝑟𝑎𝑡𝑖𝑜 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑖𝑒𝑛 𝑊𝑖𝑛𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑢𝑚𝑎𝑛 𝑊𝑖𝑛𝑠

=
𝑇ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑇ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒
 (6)

When the ratio is less than 1, the human squad

wins more than the alien squad. It signifies that

Conv-AE+FA is stronger than the previous

technique. In contrast, a ratio exceeding 1

suggests that our algorithm is underperforming.

When comparing various techniques, a higher

ratio indicates that particular technique performs

better when confronted by Conv-AE+FA.

According to Figure 11, it is not surprised that

Conv-AE provided a crucial role in extracting

useful features to be used by TD learning, which

then provided guidance to MCTS in its search. In

fact, the advantages of Conv-AE+FA becomes

more apparent on the large board, a more complex

environment where strategies become more

important.

Table 6
Combined results of large board for all rounds
(standard deviations in brackets). Some rounds
ended in a draw due to neither side winning at
time out.

Winning
rate

MCTS MCTS-
TD

MF+FA Conv-
AE+FA

Conv-
AE+FA

vs. MCTS

28.25%
(6.99%)

 67.75%
(8.40%)

Conv-
AE+FA

vs.
MCTS-

TD

 33.25%
(6.62%)

 64.50%
(6.40%)

Conv-
AE+FA

vs.
MF+FA

 31.00%
(5.72%)

66.25%
(5.15%)

In each board, MCTS-TD and MF+FA both

performed better than MCTS. In mini board,

MF+FA was better than MCTS-TD. However, a

notable observation is that on the large board,

MCTS-TD performed well compared to MF+FA,

even though MCTS-TD relied solely on local state

information, whereas MF+FA used manual

features derived from the entire state space. This

suggests that human expert input does not always

enhance the learning process and can, at times, be

detrimental.

6. Conclusions

In this research, we examine the effectiveness
of two augmentations to MCTS with TD learning:
a convolutional autoencoder to extract features of
the game board, and linear function
approximation to represent the game state in
reinforcement learning. While MCTS partially
guided by TD learning allows the algorithm to
adapt to an opponent while the game is being
played, we show that in a larger state space, a
convolutional autoencoder is effective at extract
features of the state compared to manually created
features, and that combined with linear function
approximation, this can bring statistically
significant improvements in the results of MCTS.
 This work is not without limitations. The
experiments were conducted on specific maps.
While we believe that the results are generalizable
to different layouts of maps, this should be
analyzed in further work. Furthermore,
explainable AI is an important goal of AI
research. Future research should examine in
details on the features produced by the
convolutional autoencoder to provide
explanations on their effectiveness.

Figure 11: Combined comparison of the different
techniques, using Conv-AE+FA as the benchmark
value of 1.

7. References

[1] C. B. Browne, E. Powley, D. Whitehouse, S.

M. Lucas, P. I. Cowling, P. Rohlfshagen, S.

Tavener, D. Perez, S. Samothrakis, and S.

Colton, A survey of monte carlo tree search

methods. IEEE Transactions on

Computational Intelligence and AI in games

4.1 (2012): 1-43.

[2] G. Chaslot, S. Bakkes, I. Szita, and P.

Spronck, Monte Carlo Tree Search: A New

Framework for Game AI. Proceedings of the

AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment 4.1

(2008): 216-217.

[3] R. Coulom, Efficient selectivity and backup

operators in Monte-Carlo tree search.

Proceedings of the 5th international

conference on Computers and games (2006):

72-83.

[4] G. E. Hinton and R. R. Salakhutdinov,

Reducing the dimensionality of data with

neural networks. Science 313.5786 (2006):

504–507.

[5] R. Jain, A. Isaksen, C. Holmgård, and J.

Togelius, Autoencoders for level generation,

repair, and recognition. Proceedings of the

ICCC workshop on computational creativity

and games (Vol. 9), 2016.

[6] L. Kocsis and C. Szepesvári, Bandit Based

Monte-Carlo Planning. Machine Learning:

ECML 2006, volume 4212 of Lecture Notes

in Computer Science, Springer, Berlin,

Heidelberg, 2006.

[7] Y. LeCun, B. Boser, J. S. Denker, D.

Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel, Backpropagation applied to

handwritten zip code recognition. Neural

computation, 1.4 (1989): 541-551.

[8] H. W. L. Mak, R. Han, and H. H. Yin,

Application of variational autoencoder

(VAE) model and image processing

approaches in game design. Sensors 23.7

(2023): 3457.

[9] X. Mao, C. Shen, and Y. B. Yang, Image

restoration using very deep convolutional

encoder-decoder networks with symmetric

skip connections. Advances in neural

information processing systems 29, 2016.

[10] K. Saadat and R. Zhao, Exploring Adaptive

MCTS with TD Learning in miniXCOM.

AIIDE Workshop on Experimental AI in

Games (EXAG), 2022.

[11] A. Sarkar and S. Cooper, Generating and

blending game levels via quality-diversity in

the latent space of a variational autoencoder.

Proceedings of the 16th International

Conference on the Foundations of Digital

Games (2021): 1-11.

[12] D. Seth, S. Eswaran, T. Mukherjee, and M.

Sachdeva, A Deep Learning Framework for

Ensuring Responsible Play in Skill-based

Cash Gaming. 2020 19th IEEE International

Conference on Machine Learning and

Applications (ICMLA) (2020): 454-459.

[13] D. Silver, A. Huang, C. J. Maddison, A.

Guez, L. Sifre, G. Van Den Driessche, J.

Schrittwieser, I. Antonoglou, V.

Panneershelvam, M. Lanctot, and S.

Dieleman, Mastering the game of Go with

deep neural networks and tree search. nature

529.7587 (2016): 484-489.

[14] M. Świechowski, K. Godlewski, B. Sawicki,

and J. Mańdziuk, Monte Carlo tree search: A

review of recent modifications and

applications. Artificial Intelligence Review

56.3 (2023): 2497-2562.

[15] G. Tesauro, Temporal difference learning

and TD-Gammon. Communications of the

ACM 38.3 (1995): 58-68.

[16] T. Vodopivec and B. Šter, Enhancing upper

confidence bounds for trees with temporal

difference values. 2014 IEEE conference on

computational intelligence and games

(2014): 1–8.

[17] M. H. M. Winands, Y. Björnsson, and J. T.

Saito, Monte-Carlo Tree Search Solver.

Computers and Games, volume 5131 of

Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, 2008.

