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Abstract  
Monte Carlo Tree Search is a widely acknowledged algorithm with video games being a 

common application. While MCTS has seen various enhancements, its integration with 

temporal difference learning (TD learning) in complex search environments still has interesting 

research potential. This paper introduces a novel method, Conv-AE+FA, merging convolutional 

autoencoders with a linear function approximator, to optimize game states. Applied to a game 

setting inspired by the commercial game XCOM, our study not only delves into the use of TD 

learning for guiding MCTS but also underscores the improved guidance in the MCTS search 

achieved by the use of convolutional autoencoders with linear approximation. 
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1. Introduction 

Monte Carlo Tree Search (MCTS) has gained 

extensive recognition in the realm of artificial 

intelligence (AI) for its proficiency as an efficient, 

any-time search algorithm. Its applications stretch 

across numerous sectors, with video games 

standing out as one of the most prominent areas of 

usage. Over the years, the academic and scientific 

community has proposed a plethora of 

advancements to enhance the efficacy of MCTS, 

including the proposition to combine the benefits 

of MCTS with reinforcement learning, paving the 

way for a more robust, adaptable, and intelligent 

search mechanism. 

Continuing the pursuit of refining MCTS, 

various improvements have been proposed [1]. 

Temporal difference (TD) learning has emerged 

as a noteworthy strategy to guide the search 

process. However, as the game environment 

becomes progressively more complicated, the 

utility of TD learning begins to wane. This paper 
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ventures into an innovative approach, deploying 

convolutional autoencoders in conjunction with a 

linear function approximator to generalize game 

states in TD learning, thus potentially overcoming 

its limitations in complex settings. We apply this 

novel approach to a game environment inspired 

by the commercial turn-based strategy game 

XCOM. XCOM provides an easy-to-define and 

versatile environment for comparing AI 

techniques, and improvements on its AI can be 

transferred to other domains of a similar nature. 

This paper presents the following 

contributions: 

1. An exploration of TD learning as a partial 

guidance to MCTS, in an environment 

inspired by a commercial game. 

2. A demonstration of the effectiveness of 

combining a convolutional autoencoder 

and a linear function approximator in 

enhancing the guidance in the MCTS 

search process. 



2. Related Works 

The application of AI techniques to gaming 

can be seen through many different methods, 

including search, planning, and learning 

strategies. One such method, MCTS, has been 

regularly investigated within the realm of AI 

game playing. Coulom [3] pioneered the 

integration of Monte Carlo evaluation with tree 

search, culminating in the development of the 

MCTS algorithm. The Upper Confidence Bounds 

Applied to Trees (UCT) algorithm was introduced 

by Kocsis and Szepesvári [6], serving as a variant 

of the MCTS algorithm. This variant employs a 

selection policy rooted in the Upper Confidence 

Bound (UCB) formula to strike an optimal 

balance between exploration and exploitation 

within the search tree. The UCT algorithm has 

demonstrated significant success across diverse 

domains, inclusive of game playing, planning, and 

optimization problems [14]. In the context of 

narrow tactical lines in sudden-death games such 

as Lines of Action (LOA), an MCTS offshoot, 

MCTS Solver, has been developed [17]. Research 

has also been conducted into the effective 

application of MCTS in classic and modern board 

games as well as video games [2]. 

In reinforcement learning (RL), TD learning 

represents a frequently employed method for 

modifying the value function estimation 

associated with a state or action, predicated on the 

perceived reward and the projected value of the 

succeeding state or action. TD-Gammon 

famously applied TD learning to the game of 

Backgammon [15]. The integration of TD 

learning with function approximation techniques 

is a common practice in estimating value 

functions for expansive state or action spaces [14]. 

Combining MCTS and RL can produce 

powerful algorithms. AlphaGo inspired many 

approaches in this area [13]. One strategy involves 

employing RL to acquire a heuristic evaluation 

function that directs MCTS toward the more 

fruitful sections of the game tree. Alternatively, 

RL can be used to ascertain the value of nodes 

within the tree, a technique that facilitates the 

pruning of the tree and focuses the search on more 

advantageous branches [16].These methodologies 

have found successful application in a number of 

games [3].  

More recently, Saadat and Zhao [10] presented 

the online MCST-TD algorithm, combining TD 

learning with MCTS by using TD learning to learn 

values of states online, and concurrently, using 

current estimated state values to provide partial 

guidance to MCTS to enable MCTS to adapt to 

specific opponent strategies. While the authors 

showed that this adaptation can happen quickly on 

a small test environment of a 6 by 6 game board, 

its effectives was unclear on larger environments. 

Autoencoders are no strangers to game AI 

research. Jain et al. [5] used autoencoders in game 

content generation, recognition and repair. Sarkar 

et al. [11] used variational autoencoders to 

generate levels in the style of existing games and 

blending levels across different games. Mak et al. 

[8] used autoencoders in aiding game design by 

generating game maps and avatars. Seth et al. [12] 

deployed adversarial autoencoders to identify 

players with irresponsible behaviors. Our work 

aims to explore the use of autoencoders, 

specifically convolutional autoencoders, in 

providing a better state representation for TD 

learning. 

3. Descriptions of XCOM and XCOM-
Inspired Environments 

XCOM is a series of renowned turn-based 

tactical decision-making video games. In 1994, 

MicroProse released the first version under the 

initial title "UFO: Enemy Unknown." Over the 

years, many sequels have been released, including 

"XCOM: Enemy Unknown" in 2012, "XCOM 2" 

in 2016, and "XCOM: Chimera Squad" in 2020. 

Players assume the role of a commander of an 

international organization, defending against alien 

invasions and battling alien troops. This 

commercially successful game series has garnered 

high acclaim due to its interactive narratives, 

impeccable combat scenarios, and emergent 

strategic gameplay. Beyond entertainment, 

XCOM also serves as a context for academic 

research. Given its emphasis on positional play 

strategy and tactics, XCOM is an excellent 

platform to study how adaptive AI decision-

making systems evaluate the game state and select 

actions in complex and uncertain conditions. 

Past researchers [10] tested their work on 

miniXCOM, a simplified environment inspired by 

XCOM. In this work, we recreated the 

miniXCOM environment (Figure 1), but also a 

much larger environment that is roughly 

equivalent in complexity to an actual map in an 

XCOM game (Figure 2). We called these XCOM-

Inspired Environments. The large board has a 

dimension of 18 by 18, with 4 squad members on 

each side. The layout of this board is inspired by 



the actual first level of XCOM2, where the 

playable area is roughly 20 by 18.  We modified 

the area to be symmetrical on both sides to 

provide a fair testing environment. 

Each map is represented by a grid and has 

walls that can be viewed as barriers or covers. We 

use a two-dimensional array to represent the board. 

Each grid block is assigned a specific value 

according to its state. For an empty block, it is 0. 

A wall block is -2. The block value is 1 when it is 

occupied by a human squad member. Conversely, 

the block is -1 when it has an alien squad member. 

With these four different values, the 2D array is 

able to represent all possible states on the game 

board. Moreover, there are two AI agents: the 

human squad and the alien squad. Each squad has 

several members. They have three different types 

of actions, which are controlled by various AI 

systems. Squad members are able to move on the 

board, shoot the uncovered enemy and execute 

move and shoot in a sequence if they can find an 

uncovered enemy after choosing a move 

destination. In each turn, agent can only issue one 

command to one member in its squad. 

• Move action: Every squad member has 

four directions to choose: Up, Down, Left, and 

Right. Moving one block in a certain direction 

costs one step. A parameter called Max-Move 

stipulates the maximum moving steps in each 

turn. Humans and aliens cannot move onto the 

wall. For the mini board, Max-Move is 4. For 

the large board, Max-Move is 6. 

• Shoot action: In each turn, every squad 

member can shoot at most one opponent and 

kill it immediately as long as there are no walls 

between them. From a mathematical 

perspective, a line is drawn between the squad 

member and target opponent. If this line does 

not intersect any walls, the enemy is uncovered 

and the squad member can shoot it 

successfully. 

 

These two agents continually make decisions 

and execute actions until all opposing squad 

members are eliminated, enabling them to win the 

game. The simulated XCOM game provides an 

ideal scenario for conducting our experiments and 

comparing various decision-making algorithms.  

 

4. Methodology 

This section explains the different techniques 

involved in the current research, and how they 

each contribute to the combined method of Conv-

AE+FA, the proposed novel method at playing the 

XCOM-Inspired Environments. 

 

 
Figure 1: Mini game board setup [10]. 

 

 
Figure 2: Large game board setup we used in our 
experiments, adapted from the first map of 
XCOM2. 

4.1. MCTS and UCT 

MCTS is a heuristic tree search algorithm 

designed to identify the optimal move by 

iteratively constructing a game tree, utilizing 

rollouts evaluation and selective search. This 

method involves simulating numerous game 

terminations from a designated state, recording 

the outcomes, and subsequently exploring the 

game tree to enhance the decision-making 

mechanism. This process encompasses four 

iterative phases: Selection, Expansion, Simulation, 

and Backpropagation. 

1. Selection: According to a specific 

selection rule, the algorithm chooses the best 

child as expansion node until the child node is 

unexplored or it is a terminal state. 



2. Expansion: the chosen node is added in 

the game tree if it has some unexplored actions. 

3. Simulation: This step starts from the 

expanded node. For each rollout, it repeats to 

play a move according to a fixed rollout policy 

until terminal state and records the result. 

4. Backpropagation: Back up process 

changes the attributes of the selected 

simulation node based on the result, such as 

increasing the number of visits and updating 

the node value estimate. 

 

UCT is a type of selection rule in MCTS. It 

helps MCTS manage the trade-off between the 

exploration of new nodes and exploitation of 

known paths. Formula (1) shows how to calculate 

the UCT value. 

𝑈𝐶𝑇 =  
𝑄(𝑣′)

𝑁(𝑣′)
 +  𝐶 √

2 𝑙𝑛 𝑁(𝑣)

𝑁(𝑣′)
               (1) 

𝑣’ is one of the children of the node 𝑣. 𝑄(𝑣) is 

the total reward of node 𝑣. 𝑁(𝑣) is the number of 

being visited of node 𝑣. 𝐶 is a constant number to 

control the rate of exploration. The node with 

largest UCT value will be selected to expand in 

the next step. 

In general, with the UCT selection policy, 

MCTS can concentrate on promising parts of the 

game tree and has an overview of search horizon 

compared to some other search methods based on 

alpha-beta search. 

4.2. Convolutional Autoencoder 

Convolutional neural network (CNN) [7] is a 

deep, feed-forward artificial neural network 

effective for processing grid-like data, such as 

pattern recognition and feature learning for high-

dimension images. There are three major layers in 

a classical CNN architecture, which imitates the 

structure of human brains to extract spatial 

features from input data: convolutional layer, 

pooling layer, and fully connected layer. 

 Convolutional layers encompass numerous 

small learnable filters, interchangeably referred to 

as kernels. The filters traverse the image in 

alignment with a predefined stride and a two-

dimensional feature map emerges, encapsulating 

abstracted features derived from the primary input 

data. The purpose of the pooling layer is to reduce 

spatial dimensions, thereby mitigating the risk of 

overfitting while reinforcing the extracted 

features. The fully connected layer yields a linear 

output, transforming the multidimensional 

features derived from preceding layers into an n-

by-1 vector. In our work, we use this output as a 

representation of our game states. 

An autoencoder [4] is an unsupervised 

learning algorithm designed for many tasks such 

as feature extraction and data generation. This 

algorithm compresses input data and reconstructs 

them. An autoencoder approach fundamentally 

consists of two primary components, an encoder 

and a decoder. The encoder and the decoder are 

learnable artificial neural networks. Figure 3 

shows an autoencoder.  

Encoder 𝑓𝜃 : ℝ𝑚 → ℝ𝑘  maps input 𝑋  into 

compressed representation 𝑍. 

Decoder 𝑔𝜙: ℝ𝑘 → ℝ𝑚 maps representation 𝑍 

into reconstruction 𝑋̂. (Usually, 𝑘 ≪ 𝑚.) 

We utilize certain objective functions, like 

mean square loss, to update the encoder and 

decoder. Formula (2) implies that the ideal 

encoder and decoder should be the pair that 

reduces the discrepancy between the input data 

and the reconstructed data to the minimum. 

The optimization formula: 

𝜃𝑒𝑛𝑐 , 𝜙𝑑𝑒𝑐 = argmin
Θ,Φ

1

𝑁
∑ ‖𝑥𝑖 − 𝑔𝜙(𝑓𝜃(𝑥))

𝑖
‖

2

2
𝑁

𝑖=1

   (2) 

 

 

 

Upon completion of training, when feeding a 

real game state 𝑥  into the encoder, it yields a 

compressed data output known as the feature 

vector, which is beneficial for our downstream 

tasks. 

A convolutional autoencoder [9] combines the 

strengths of CNNs and autoencoders to learn 

hierarchical representations of input data. It 

leverages the power of extracting features from 

images and the capability to train an image feature 

extractor without labels. In our XCOM-Inspired 

Environments, the game board can be viewed as 

an image composed of four different pixel types 

so it is a suitable environment to utilize a CNN for 

analyzing the game board image. The logic of a 

convolutional autoencoder mirrors that of the 

standard autoencoder: making the reconstruction 

data 𝑋̂ closely resemble to original input 𝑋 after 

passing through entire autoencoder architecture. 

Figure 3: Structure of an autoencoder. 



The major distinction from a standard 

autoencoder lies on the application of CNNs as the 

mapping function 𝑓𝜃  for the encoder and 

transposed CNNs as the function 𝑔𝜙 for the 

decoder. We show the details of the encoder and 

decoder in Tables 1 and 2. 

 

Table 1 
Details of Convolutional Autoencoder-Mini. 
Other parameters: 𝑁1 = 16 , 𝑁2 = 8 , 
num_feature = 6. 
 

Layer Type Kernel  Stride Padding Output-
Padding 

1 
2 
3 
4 
5 
6 

Conv1 
Max-Pool1 

Conv2 
Max-Pool2 
TransConv1 
TransConv2 

3 
2 
3 
2 
3 
3 

1 
2 
1 
1 
2 
2 

1 
0 
1 
0 
1 
1 

NA 
NA 
NA 
NA 
0 
1 

 

Table 2 
Details of Convolutional Autoencoder-Large. 
Other parameters: 𝑁1 = 8 , 𝑁2 = 16 , 
num_feature = 10. 
 

Layer Type Kernel  Stride Padding 

1 
2 
3 
4 
5 
6 
7 

Conv1 
Max-Pool1 

Conv2 
Max-Pool2 
TransConv1 
TransConv2 
TransConv3 

3 
2 
3 
2 
2 
2 
3 

1 
2 
1 
2 
2 
2 
1 

1 
0 
1 
0 
0 
0 
0 

4.3. Linear Function Approximation 

TD learning aims to get an optimal policy and 

guide the AI agent by learning the value function. 

When using function approximation for the value 

function, the approximator provide a value 

estimate for each state. We use the state values 

determined by the function approximator to assist 

in selecting the best node in the MCTS algorithm. 

Function approximation is often used to handle 

reinforcement learning problems with large or 

continuous states, as tabular methods are 

impractical to assess the value of each state. We 

used a linear function approximator so that TD 

learning can still retain the property of online real-

time learning. 

The diagram showing the entire process used 

by Conv-AE+FA is illustrated in Figure 4. We re-

scale the features extracted by autoencoder 

through Z-score normalization. Linear function 

approximation represents the value function with 

a linear combination of weights and transformed 

features. Instead of updating a separate value 

estimate for each state as in tabular TD learning, 

the agent learns a weight vector. Formula (3) 

shows that when we feed the game state matrix 

into the encoder of the trained convolutional 

autoencoder, the compressed data is viewed as the 

feature vector representing the state. 
    𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑆𝑡𝑎𝑡𝑒)  = 𝒙(𝑆)

= [𝑥1(𝑆) 𝑥2(𝑆) ⋯   𝑥𝑛(𝑆)]          (3) 

 

Figure 4: Structure of Conv-AE+FA: Convolutional Autoencoder and Linear Function Approximator 



The estimated value of a state is given by the dot 

product of weights and the feature vector. 

The TD learning method updates the 

parameter vector based on the observed TD error, 

which shows in the Formula (4). 

𝒘 ← 𝒘 + 𝛼(𝑅 +  𝛾 𝑣̂(𝑆′, 𝒘) − 𝑣̂(𝑆, 𝒘))𝒙(𝑆)    (4) 

 

𝑆 is current state and 𝑆′ is the next state.  𝑅 is 

the reward for state. 𝛼 is the learning rate and 𝛾 is 

the discount factor. The weight vector is updated 

to minimize this TD error, effectively learning a 

value function that can generalize from seen states 

to unseen states based on their features. 

After getting the estimate of the game states, 

we add this value into the UCT formula used by 

MCTS as in Formula (5).  

 
𝑄(𝑣′)

𝑁(𝑣′)
 +  𝐶 √

2 𝑙𝑛 𝑁(𝑣)

𝑁(𝑣′)
 + 𝑣̂(𝑆, 𝒘)                   (5) 

The selection of nodes in MCTS is partially 

guided by the added term of 𝑣̂(𝑆, 𝒘) , which 

represents state information.  

5. Experiments 

We conducted experiments on both the 6×6 

mini board and our larger 18×18 board in the 

XCOM-Inspired Environments. The 6×6 mini 

board has two squad members on each side where 

as the 18×18 board has four squad members on 

each side, resulting in a much larger state space. 

5.1. Dataset and Training 

To train the convolutional autoencoder, a large 

dataset is required. All training samples should 

simulate real game states so that the autoencoder 

can learn useful features. We created two datasets 

for the two board sizes. The mini-dataset has 

10,000 samples on the 6×6 mini board and the 

large-dataset has 60,000 samples on the 18×18 

large board. Considering that actual game states 

include varying numbers of humans and aliens, 

we generate all possible scenarios. Humans and 

aliens are all randomly generated on the game 

board while ensuring they cannot attack each 

other. Tables 3 and 4 illustrate the distribution of 

volumes for different combinations of humans 

and aliens. 

We used the Adam optimizer with learning 

rate 0.001. After 10 epochs, the loss function 

converged and we saved the parameters of the 

encoder for use in the MCTS process. 

 

Table 3 
A total of 10,000 mini boards are generated 
randomly with the following distribution of 
numbers of humans and aliens. 

         Alien: 1 2 

Human: 1 1500 2000 

2  2000 4500 

 
Table 4 
A total of 60,000 large boards are generated 
randomly with the following distribution of 
numbers of humans and aliens. 

         Alien: 1 2 3 4 

Human: 1 3500 2500 2000 1500 

2  5500 5500 3500 3500 

3 3500 3500 4500 4500 

4 3500 3500 3500 6000 

 

5.2. Experiment Details 

We conducted six experiments, three on the 

mini board and three on the large board. We 

compared our proposed approach, MCTS with 

Conv-AE and linear function approximation 

(Conv-AE+FA) with other methods. The 

opponents are, respectively: MCTS (baseline), 

MCTS-TD, and MCTS with manually extracted 

features and linear function approximation 

(MF+FA). We set a fixed limit on the number of 

iterations the algorithm can perform and stop the 

search once this limit is reached. The limit is 100 

in our experiments. 

For the approach with manually extracted 

features, we would like to measure the 

effectiveness of feature extraction from Conv-AE 

against features chosen manually based on human 

knowledge. We hypothesize that there may be 

many drawbacks with manually choosing features. 

Despite human knowledge, it is difficult to 

determine whether the chosen features are 

sufficient for the problem. Based on the expertise 

of a player of the XCOM games, we created five 

features: the number of the humans and aliens, the 

number of possible actions and the number of 

rows occupied by humans and aliens. These 

features together present the distribution of 

humans and aliens. 

In each experiment, a single run comprises a 

total of 40 game rounds. We grouped the results 

after every 10 rounds, partitioning each run into 

four segments. For the mini board, we conducted 

20 runs of 40 rounds and averaged the results. For 



the large board, we conducted 10 runs. In the 

interest of fairness, humans and aliens alternate in 

initiating the first action. During each run, humans 

take the first move in 20 rounds, while in the 

remaining rounds, the aliens act first. A game 

round concludes in a draw if neither squad 

achieves victory following 25 moves. For 

function approximation, the weight vectors are 

randomly initialized between 0 and 1 at the 

beginning of each run.  The details of 

hyperparameters are in Table 5. Shooting an 

enemy produces a reward of 10 to the agent and a 

reward of -10 to the opponent. The reward for the 

action to move is 0. 

 

Table 5 
Parameter values used in the experiments. 

Parameters Mini 
board 

Large 
board 

Learning rate 0.1 0.1 

Exploration factor 1 √2⁄  1 √2⁄  
Number of features 
(generated by Conv-

AE) 

6 10 

Number of features 
(designed manually) 

5 5 

 

5.3. Mini Board Results 

 

Figure 5 shows the results of Conv-AE+FA vs. 

MCTS on the mini board. The error bars represent 

1 standard deviation. Conv-AE+FA held an 

advantage over MCTS in every 10 rounds 

(statistically significant at 95% confidence at 20 

rounds and beyond, using paired two-tailed t-

tests). As the weight vector updates, Conv-

AE+FA adapts to the opponent and becomes 

stronger. 

 

Figure 6 shows the results of Conv-AE+FA 

vs. MCTS-TD. Since MCTS-TD is also an 

adaptive algorithm, it performed better than 

MCTS against Conv-AE+FA. Conv-AE+FA 

provides state information of the entire game 

board while in past work [10], MCTS-TD only 

represented the state by a 3 by 3 grid centered 

around the current location of an agent (to reduce 

state space). Conv-AE+FA outperformed MCTS-

TD and the results are statistically significant at 

95% confidence at 30 rounds and beyond. 

 

 

Figure 7 shows the results of Conv-AE+FA vs. 

MF+FA (Manual Features and Function 

Approximation). Although manual features also 

contain state information of the entire game board, 

it remains uncertain whether the information is 

Figure 5: Conv-AE+FA compared to MCTS on 
mini board. 

Figure 6: Conv-AE+FA compared to MCTS-TD 
on mini board. 

Figure 7: Conv-AE+FA compared to MF+FA on 
mini board. 

 



diverse and beneficial for our decision-making 

process. Consequently, Conv-AE+FA 

demonstrated superior performance over MF+FA 

and the results are statistically significant at 95% 

confidence at 30 rounds and beyond. 

5.4. Large Board Results 

 

Figure 8 shows the results of Conv-AE+FA 

vs. MCTS on the large board. Conv-AE+FA 

holds a larger advantage over MCTS in every 10 

rounds. The winning rate is higher compared to 

the mini board. This show that in a more complex 

environment, CNNs improve the ability to 

analyze the game state, extract hierarchical 

features and provide enhanced guidance to 

MCTS. 

Figure 9 shows the results of Conv-AE+FA 

vs. MCTS-TD on the large board. Compared to 

the experiments on the mini board, our approach 

has an obvious advantage over MCTS-TD 

because linear function approximation is more 

scalable to high-dimensional state spaces. It 

generalizes across states based on their features, 

which can be a more efficient representation. 

MCTS-TD with a 3-by-3 local grid representation 

cannot obtain important information of current 

state beyond its immediate neighbors. 

Figure 10 shows the results of Conv-AE+FA 

vs. MF+FA (Manual Features and Function 

Approximation) on the large board. Compared to 

the experiments on mini board, our approach has 

an obvious advantage. Convolutional 

autoencoders are capable of learning a hierarchy 

of features due to their deep, layered structure.  

Conv-AE automatically learns to extract features 

that are useful for reconstruction, which can also 

be useful for other tasks. Table 6 shows the 

combined results for a clearer comparison. All 

results shown in Table 6 are statistically 

significant using paired two-tailed t-tests at 95% 

confidence level. 
 

 

5.5. Discussions 

 According to the description of the 

experiments, the human squad is always the 

proposed algorithm while alien squad has three 

different techniques. To provide contrast for the 

effects of these three techniques, we include a 

ratio comparison graph. As shown in Formula (6), 

Figure 8: Conv-AE+FA compared to MCTS on 
the large board. 

Figure 10: Conv-AE+FA compared to MF+FA on the 
large board. 

Figure 9: Conv-AE+FA compared to MCTS-TD on 
the large board. 



the ratio for each technique is determined by 

dividing the winning number of the alien squad, 

indicative of the efficacy of the compared 

technique, by the winning number of the human 

squad representing the performance of our 

proposed Conv-AE+FA technique. 

 

𝑟𝑎𝑡𝑖𝑜 =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑖𝑒𝑛 𝑊𝑖𝑛𝑠

𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑢𝑚𝑎𝑛 𝑊𝑖𝑛𝑠
     

=
𝑇ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒

𝑇ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒
   (6) 

 

When the ratio is less than 1, the human squad 

wins more than the alien squad. It signifies that 

Conv-AE+FA is stronger than the previous 

technique. In contrast, a ratio exceeding 1 

suggests that our algorithm is underperforming. 

When comparing various techniques, a higher 

ratio indicates that particular technique performs 

better when confronted by Conv-AE+FA. 

According to Figure 11, it is not surprised that 

Conv-AE provided a crucial role in extracting 

useful features to be used by TD learning, which 

then provided guidance to MCTS in its search. In 

fact, the advantages of Conv-AE+FA becomes 

more apparent on the large board, a more complex 

environment where strategies become more 

important. 

 

Table 6 
Combined results of large board for all rounds 
(standard deviations in brackets). Some rounds 
ended in a draw due to neither side winning at 
time out. 

Winning 
rate 

MCTS MCTS-
TD 

MF+FA Conv-
AE+FA 

Conv-
AE+FA 

vs. MCTS 

28.25% 
(6.99%) 

  67.75% 
(8.40%) 

Conv-
AE+FA 

vs. 
MCTS-

TD 

 33.25% 
(6.62%) 

 64.50% 
(6.40%) 

Conv-
AE+FA 

vs. 
MF+FA 

  31.00% 
(5.72%) 

66.25% 
(5.15%) 

 

In each board, MCTS-TD and MF+FA both 

performed better than MCTS.  In mini board, 

MF+FA was better than MCTS-TD. However, a 

notable observation is that on the large board, 

MCTS-TD performed well compared to MF+FA, 

even though MCTS-TD relied solely on local state 

information, whereas MF+FA used manual 

features derived from the entire state space. This 

suggests that human expert input does not always 

enhance the learning process and can, at times, be 

detrimental. 

6. Conclusions 

In this research, we examine the effectiveness 
of two augmentations to MCTS with TD learning: 
a convolutional autoencoder to extract features of 
the game board, and linear function 
approximation to represent the game state in 
reinforcement learning. While MCTS partially 
guided by TD learning allows the algorithm to 
adapt to an opponent while the game is being 
played, we show that in a larger state space, a 
convolutional autoencoder is effective at extract 
features of the state compared to manually created 
features, and that combined with linear function 
approximation, this can bring statistically 
significant improvements in the results of MCTS. 
 This work is not without limitations. The 
experiments were conducted on specific maps. 
While we believe that the results are generalizable 
to different layouts of maps, this should be 
analyzed in further work. Furthermore, 
explainable AI is an important goal of AI 
research. Future research should examine in 
details on the features produced by the 
convolutional autoencoder to provide 
explanations on their effectiveness.  

 

Figure 11: Combined comparison of the different 
techniques, using Conv-AE+FA as the benchmark 
value of 1. 
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