
Procedural Content Generation in Games: A Survey with Insights on Emerging
LLM Integration

Mahdi Farrokhi Maleki, Richard Zhao
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada, T2N 1N4
mahdi.farrokhimaleki@ucalgary.ca, richard.zhao1@ucalgary.ca

Abstract

Procedural Content Generation (PCG) is defined as the au-
tomatic creation of game content using algorithms. PCG has
a long history in both the game industry and the academic
world. It can increase player engagement and ease the work
of game designers. While recent advances in deep learning
approaches in PCG have enabled researchers and practition-
ers to create more sophisticated content, it is the arrival of
Large Language Models (LLMs) that truly disrupted the tra-
jectory of PCG advancement.
This survey explores the differences between various algo-
rithms used for PCG, including search-based methods, ma-
chine learning-based methods, other frequently used meth-
ods (e.g., noise functions), and the newcomer, LLMs. We also
provide a detailed discussion on combined methods. Further-
more, we compare these methods based on the type of content
they generate and the publication dates of their respective pa-
pers. Finally, we identify gaps in the existing academic work
and suggest possible directions for future research.

Introduction
The video game industry has been expanding rapidly and
even surpassed the combined revenue of the music and
movie industries in 2022 (Forbes Magazine 2023). This
huge market means there is always a need for new con-
tent. However, the process of creating a game is very time-
consuming and can take several years (Juego Studio 2023).
Procedural Content Generation (PCG) is considered one
of the solutions to this problem and can increase replay
value, reduce production costs, and minimize effort (Amato
2017). PCG for games has existed since the 1980s, and it
was mainly used in roguelike games such as Beneath Apple
Manor (1978) and the genre’s namesake, Rogue (A.I.Design
1980).

PCG can be used to create a variety of content, but it is
commonly used to create art assets (Kang et al. 2020; Mit-
termueller, Ye, and Hlavacs 2022), maps and levels (Kre-
itzer, Ashlock, and Pereira 2019; Kumaran, Mott, and Lester
2019), game mechanics (Machado et al. 2019), and mu-
sic for games (Makhmutov 2019). The algorithms used can
greatly vary depending on the content they are supposed
to generate, but we can generally categorize them under

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a few categories. Most of the algorithms reviewed in this
survey fall under one or a combination of three categories:
(1) search-based methods, such as Monte Carlo Tree Search
(MCTS), which focus mainly on optimizations, (2) learning-
based methods, including traditional machine learning and
deep learning (DL), such as generative adversarial networks
(GAN) and reinforcement learning (RL), which are the re-
cent additions to PCG, and (3) other methods, such as noise
functions and generative grammars, that we could not cate-
gorize in the earlier categories, Because of the massive inter-
est in DL in recent years, there are many papers published
that use DL algorithms as part of PCG. The newest player
on the team, Large Language Models (LLMs), comes with
very unique characteristics that we will describe in detail.

Related Works
There are a handful of surveys on PCG for games with dif-
ferent focuses and aims that have been published before our
work. Some of them discuss the technical details of PCG
algorithms (Zhang, Zhang, and Huang 2022), while others
focus on content created by PCG (Hendrikx et al. 2013;
De Carli et al. 2011). Some papers focus on specific types
of PCG; for example, machine learning in PCG, while other
works (Summerville et al. 2018) mainly focus on DL al-
gorithms in PCG. Liu et al. (2021) specifically examines
puzzle generation using PCG. Two textbooks, one for PCG
(Shaker, Togelius, and Nelson 2016) and one for Game AI
(Yannakakis and Togelius 2018), cover search-based meth-
ods, solver-based methods, constructive generation methods
(such as cellular automata and grammar-based methods),
fractals, noise, and ad-hoc methods for generating diverse
game content.

As of the writing of this paper, the most recent survey
on PCG was published in 2022 (Zhang, Zhang, and Huang
2022). This paper includes different categories of PCG;
however, it does not discuss generated content in detail nor
mention gaps in the field or possible future directions. Based
on this information, it is clear that there is a lack of a com-
prehensive review of PCG for games in recent years. Since
the publication of Liu et al. (2021), PCG has grown quickly,
and a significant number of papers and articles, especially
those discussing DL and LLMs, have been published. New
research directions and possibilities have emerged in ways
that significantly changed the research field. A review of the



state-of-the-art and the latest applications of DL and LLMs
to PCG is needed.

Review Structure
The structure of the paper is as follows:

First, we give an overview of the different types of con-
tent that can be generated using PCG. Then, we go through
each category and explain the most commonly used meth-
ods published in academic articles. While some cutting-edge
deep learning methods are applied on their own, others are
applied in combination with more traditional methods, or in
an interactive setting (Liu et al. 2021). Because of this, we
added another category called combined methods. The rea-
son behind this choice is that we saw a new trend in combin-
ing different algorithms (especially GANs, RL, and LLMs),
and we believe that this new category could shape the fu-
ture of PCG for games. Following this, using the data we
gathered by analyzing recently published papers, we discuss
the research trends, areas of focus in PCG, gaps in academic
research, and possible solutions. We end the paper with an
outlook on possible future directions and a conclusion.

For reviewing the mentioned articles, we had several cri-
teria for inclusion and exclusion, which we explain below:

1. To ensure a deeper focus on recently published papers,
we selected related papers on PCG for games published
in one of five different well-known conference series: the
Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE) conference series, the International Con-
ference on the Foundations of Digital Games (FDG) se-
ries, the Advances in Computer Games (ACG) confer-
ence series, the Computer-Human Interaction in Play
(CHI-PLAY) conference series, and the IEEE Confer-
ence on Games (CoG) series, during the most recent five
years (2019-2023). Based on these criteria, we obtained
207 articles aggregated in Figure 1. The distribution of
selected papers is as follows: FDG: 40%, CoG: 33%, AI-
IDE: 24%, CHI PLAY: 2%, ACG: 1%.
For works before this period, we only discuss influen-
tial or interesting papers with a high citation count in the
mentioned survey. For the latter, we used Google Scholar
for academic papers and Google for grey literature. The
phrase used in Google Scholar to find these articles was
(‘Procedural Content Generation’ OR PCG) AND (game
OR games), and the phrase used in Google was ‘Proce-
dural Content Generation for games’.

2. We only included papers focusing on generating content,
so articles similar to Osborn et al. (2019), which is about
evaluating the generated content and not generating it,
are not part of this survey.

3. We excluded research that focused solely on the behav-
iors of non-player characters (NPCs). While some behav-
ior generation techniques may overlap with PCG, we feel
that NPC behaviors are a separate topic that deserves its
own analysis.

4. While we focused on papers that talked about content
generation in video games, we also mentioned articles
that used PCG in tabletop games and board games.

5. It is important to note that content generation has uses
outside of designing and developing games for humans
to experience. In addition to creating content in games
meant for humans to play, PCG is also being utilized in
scientific research to create game-like benchmarks and
playgrounds for reinforcement learning and other forms
of AI (Liu et al. 2021). PCG is also being used in other
formats, such as movies (Massive software 2024) and art
(Aminian, Parsa 2023). In this paper, we only focus on
game content generation.

Novelty of the Work
The differences between our work and previous surveys are
that (i) we conduct a comprehensive review of both PCG
methods and targeted content, (ii) at the time of writing, we
are the first review paper to include LLMs as part of the
methods used in PCG, and describe why LLMs are unique
from all previous approaches, (iii) we add a section for com-
bined methods and discuss why this category is important,
and (iv) by analyzing papers published in the most recent
5 years in different conferences, we create a timeline for
the methods used and find the current trend in academic re-
search.

Content Types
Almost everything, from sounds to the game narrative, can
be generated nowadays, but the generated content for games
can vary a lot depending on the algorithms used. For exam-
ple, LLMs are mostly used to create game narratives (Huang
and Sun 2023), and GANs are considered a better solution to
generate images (Kang et al. 2020) and 2D levels (Abraham
and Stephenson 2023).

There are several ways that we can categorize generated
content. For example, it can be divided into online and of-
fline generation. Online generation means that the content
generation is performed during the runtime of the game,
while offline generation means it is created during game de-
velopment. Additionally, content can be categorized as nec-
essary or optional (Togelius et al. 2011). For this survey, we
use categories similar to the ones presented by Hendrikx et
al. (2013) with some modifications. We divide content cre-
ated for games into five different categories, each consisting
of multiple items.

1. Game bits: This category consists of the smallest pieces
(units) used in games. Any type of generated texture,
sound, vegetation, structures and buildings, and object
properties (e.g. can it interact with basic physics?) goes
into this list. We also included art and images (Coutinho
and Chaimowicz 2022) created by PCG algorithms in
this category.

2. Game Space: Game space is the physical environment
that the game takes place and is created from game bits.
PCG algorithms are commonly used to generate maps
and roads for games. Researchers have even tried to cre-
ate entire game worlds with them (Prins et al. 2023).

3. Game Scenarios: Game scenarios are parts of the game
that are tied to the narrative. This includes generated con-
versations, stories, and quests. We include puzzles and



Figure 1: A timeline showing the types of algorithms ap-
peared in PCG-related research papers during the most re-
cent five years.

interactive level elements in game scenarios because they
are part of the scenarios that contribute to the story. This
is especially true in the case of generated levels for side-
scrolling 2D games (Kumaran, Mott, and Lester 2019).
Levels for music games, such as Guitar Hero or Dance
Dance Revolution, can be seen as 2D levels as well (Liu
et al. 2021).

4. Game Design: This category consists of any mechanics
or rules created for games (what can the player do and
what are the goals?) It also includes generated system
design, which we interpret as systems used in the games.
Generating spawn points for first-person shooter games
for game design purposes (Ballabio and Loiacono 2019)
is a perfect example of a generated design system.

5. Derived content: Derived content includes everything
that is not essential to the game but can help the player
better immerse in the game world. This category con-
tains background NPC interactions, news found within
the game, and chatter of different characters that are not
part of the game’s story or a quest.

PCG Algorithms
Due to the different types and roles of content in games, di-
verse PCG methods have been adapted for procedural con-
tent generation. In this section, we present different algo-
rithms that exist and can be used to generate items. We cat-
egorized them into five main categories: Search-based, Ma-
chine Learning-based, Other, LLMs, and Combined Meth-
ods. The category called Combined Methods includes pa-
pers that use several methods in their study, either in parallel
or in one integrated system.

It is worth mentioning that there were a few methods that
we could not place under specific subgroups, so we decided
to mention them at the start of each category.

Search-Based Methods
The term ‘search-based PCG’ was coined by Togelius in his
paper on the taxonomy of PCG (Togelius et al. 2010). A
search-based PCG refers to a special case of generate-and-
test PCG. A generate-and-test PCG does not directly dish

out content it generates but instead tests the content first us-
ing a test function. Depending on the test result, the PCG can
either accept the content or reject it and create new content.

A search-based PCG is a test-and-generate PCG that sat-
isfies two criteria (Prasetya and Maulidevi 2016). First, in-
stead of simply accepting or rejecting content, the test func-
tion of a search-based PCG assigns a real value that mea-
sures the acceptability of the content. This value is often
called fitness, and the function that produces it is called a fit-
ness function. Second, in the creation of new, better content,
a search-based PCG uses the previously rejected content as
the creation base, and the new content is a slightly modi-
fied version of the old content. Search-based methods have
been used to generate a variety of content, such as puzzles,
race tracks, levels, terrains, and maps (Togelius et al. 2010;
Prasetya and Maulidevi 2016).

In many cases, search-based algorithms use some form
of evolutionary algorithm as the main search mechanism,
as evolutionary computation has so far been the method
of choice among search-based PCG practitioners. However,
search-based PCG does not need to be married to evolution-
ary computation; other heuristic and stochastic search mech-
anisms are viable as well (Togelius et al. 2010). In this sec-
tion, we discuss evolutionary algorithms, Wavefunction Col-
lapse (WFC), Monte Carlo Tree Search (MCTS), simulated
annealing, and particle swarm optimization.

1. Evolutionary Algorithm: In an evolutionary algorithm,
a population of candidate content instances is held in
memory. Each generation, these candidates are evaluated
by the evaluation function and ranked. The worst can-
didates are discarded and replaced with copies of the
good candidates, except that the copies have been ran-
domly modified (i.e., mutated) and/or recombined (To-
gelius et al. 2010). One of the most famous examples
of evolutionary algorithms is genetic algorithms. Genetic
algorithms are used in many instances (Baek et al. 2022;
Mitsis et al. 2020; Drageset et al. 2019) to create playable
levels and game bits. This algorithm can also be used
to create more traditional types of games. For exam-
ple, Botea and Bulitko (2023) use this algorithm to cre-
ate Romanian crossword puzzles. Other evolutionary al-
gorithms are also used to create soundtracks for games
(Makhmutov 2019), maps and game bits (Makhmutov
2019), roads (Song and Whitehead 2019), and levels for
board games (Gerhold and Tijben 2023).

2. Planning Algorithms: Planning, in general, is a
problem-solving technique consisting of a planning prob-
lem (i.e., initial state and goal specification) and a plan-
ning domain (i.e., objects, predicates, and action oper-
ators). Given the input of a planning problem, a sound
planner produces a solution or a plan, which is a se-
quence of actions that achieve all the specified goal con-
ditions without any causal threats (Song et al. 2020). In
recent years, planning-based algorithms have often been
used to generate stories in games because planning-based
narrative generation is effective at producing stories with
a logically sound flow of events (Siler 2022).

3. Wave Function Collapse (WFC): WFC is a texture



synthesis algorithm. Compared to earlier texture synthe-
sis algorithms, WFC guarantees that the output contains
only those NxN patterns that are present in the input.
This makes WFC perfect for level generation in games
and pixel art, and less suited for large full-color textures
(Efros and Leung 1999). The WFC algorithm also sup-
ports constraints, allowing it to be easily combined with
other generative algorithms or manual creation (Gumin
2021).

4. Monte Carlo Tree Search (MCTS): Monte Carlo Tree
Search (MCTS) is a heuristic search algorithm that in-
volves searching combinatorial spaces represented by
trees. In such trees, nodes denote states whereas edges
denote transitions (actions) from one state to another
(Świechowski et al. 2023).

5. Simulated Annealing: Simulated annealing is a process
where a setup is randomly tweaked and compared to
the previous setup using the cost function. If it is bet-
ter, the new setup is kept. Otherwise, the decision to keep
the new setup is made randomly, with the probability of
keeping the old setup proportional to how much better it
is (Russell and Norvig 2016).

6. Particle Swarm Optimization (PSO): PSO is a general-
purpose optimization technique developed by Eberhart
and Kennedy (1995). This technique was inspired by the
concept of swarms in nature, such as bird flocking, fish
schooling, or insect swarming. The idea is that individ-
ual members of the swarm can profit from the discover-
ies and previous experiences of all other members of the
swarm during the search for the optimum solution (Duro
and de Oliveira 2008).

Machine Learning-Based Methods
Machine learning methods have gained a lot of popularity
during the last decade (Summerville et al. 2018). Research
on neural networks under the name deep learning has precip-
itated a massive increase in the capabilities and application
of methods for learning models from big data (Schmidhu-
ber 2015; Goodfellow, Bengio, and Courville 2016). They
have provided us with new ways for generating audio, im-
ages, 3D objects, network layouts, and other content types
(Goodfellow et al. 2014) across a range of domains, includ-
ing games. For example, long short-term memory (LSTMs)
are mostly used for time-dependent sequential data (e.g.,
action sequences, agent paths, charts for rhythm) and lan-
guage models (Risi and Togelius 2020), while generative
adversarial networks (GANs) have been applied to gener-
ate artifacts, such as images, music, and speech (Goodfellow
et al. 2014). Outside of content generation, machine learn-
ing algorithms have been widely used in testing generated
maps using other algorithms (Liu et al. 2021). Many other
machine learning methods can also be utilized in a genera-
tive role, including n-grams, Markov models, autoencoders,
and others (Boulanger-Lewandowski, Bengio, and Vincent
2012; Fine, Singer, and Tishby 1998; Gregor et al. 2015;
Summerville et al. 2018).

In this section, we talk about different machine learn-
ing methods such as Autoencoders (including deep varia-

tional autoencoders), Recurrent Neural Networks (includ-
ing LSTMs), Generative Adversarial Networks (GANs),
Markov Models, Reinforcement Learning methods, and
Transformers.

The most recent entry, LLMs, are gaining a lot of attention
among researchers. While state-of-the-art LLMs use trans-
formers as their underlying architecture, their model-as-a-
service (MaaS) nature puts them into a different category.

It is worth mentioning that not all articles regarding
deep learning methods use complex neural network models.
Merino et al. (2023) use neural networks to create sprites
and game maps for 2D games. Bhaumik et al. (2023) and
Kumaran et al. (2019) use neural network models to gener-
ate maps and levels for 2D games.

1. Simple Neural Networks: Some works on PCG algo-
rithms rely on the use of relatively simple neural net-
works. For example, papers such as Chen etl al. (2020),
take images as inputs and output game levels using neu-
ral networks.

2. Recurrent Neural Networks & LSTMs: A recurrent
neural network (RNN) is a type of artificial neural net-
work that uses sequential data or time series data. They
are distinguished by their “memory” as they take infor-
mation from prior inputs to influence the current input
and output (Medsker, Jain et al. 2001). LSTMs are simi-
lar neural networks introduced to eliminate the vanish-
ing gradient problem in RNNs. LSTMs work to solve
that problem by introducing additional nodes that act as a
memory mechanism, telling the network when to remem-
ber and when to forget. As mentioned before, LSTMs and
RNNs are mostly used to create sequential data. Sum-
merville and Mateas (2016) deals with Mario levels as
a sequence of data and combines Markov Chains and
LSTMs to create new levels.

3. Generative Adversarial Networks (GANs): GANs are
very popular for content generation purposes. They usu-
ally consist of two networks, a generator and a discrimi-
nator, that are trained iteratively to allow the generator to
create more realistic content while the discriminator gets
better at distinguishing generated content from real data
(Goodfellow et al. 2014; Liu et al. 2021).
GANs are perfect for generating content represented by
pixel-based images or 2D arrays of tiles, such as levels,
maps, landscapes, and sprites. By reviewing the gathered
papers, it can be seen that in the work using GANs for
level generation, game levels are tackled as images only
during training, while the constraints for validating levels
are not considered at all.

4. Markov Models: The Markov chain algorithm is a typi-
cal constructive method. In this approach, content is gen-
erated on-the-fly (Kernighan and Pike 2006) according
to the conditional probabilities of the next state in a se-
quence based on the current state. This state can incor-
porate multiple previous states via the construction of n-
grams. An n-gram model (or n-gram for short) is sim-
ply an n-dimensional array where the probability of each
state is determined by the n states that precede it (Sum-
merville et al. 2018). This is the simplest form of Markov



chains, also called 1D Markov chains.
There are also multidimensional Markov chains
(MdMCs) (Ching, Zhang, and Ng 2007), where the state
represents a surrounding neighborhood and not just a
single linear dimension. A multidimensional Markov
chain differs from a standard Markov chain in that it
allows for dependencies in multiple directions and from
multiple states, whereas a standard Markov chain only
allows for dependence on the previous state alone (Sum-
merville et al. 2018). In addition to their standard MdMC
approach, Snodgrass and Ontañón developed a Markov
random field (MRF) approach (Goodfellow et al. 2014)
that performed better than the standard MdMC model
in Kid Icarus, a domain where platform placement is
pivotal to playability (Snodgrass and Ontanón 2016).
This method has generated novel but recognizable game
names (Browne 2008), natural language conversations,
poetry, jazz improvisation (Pachet 2004), and content
in a variety of other creative domains (Bentley, Kumar
et al. 1999).

5. Autoencoders: An autoencoder is a type of neural net-
work architecture designed to efficiently compress (en-
code) input data down to its essential features, then re-
construct (decode) the original input from this com-
pressed representation. One of the famous autoencoders
used for PCG is variational autoencoders (VAEs). VAEs
are generative models that learn compressed representa-
tions of their training data as probability distributions,
which are used to generate new sample data by creat-
ing variations of those learned representations (Ng et al.
2011). These algorithms are mostly used for generating
2D maps and levels.
Snodgrass and Sarkar (2020) use VAEs to generate level
structures and a search-based approach to blend details
from various platformers, while Sarkar et al. (Sarkar et al.
2020) directly trains VAEs on levels from several plat-
forming games and interpolates the latent vectors be-
tween domains for blending (Liu et al. 2021). Some-
times, trained autoencoders may be used to repair un-
playable levels. Davoodi et al. (2022) train an autoen-
coder to repair manually designed levels for different
games by re-iterating it over the decoder while using a
trained discriminator from a GAN model to determine
the stopping criteria (Liu et al. 2021).

6. Reinforcement Learning: RL problems involve learn-
ing how to map situations to actions that maximize a nu-
merical reward signal (Sutton and Barto 2018). Most ar-
ticles that use RL develop agents to play generated levels,
which indirectly serve as content evaluators.
To generate content using RL, the generation task is usu-
ally transformed into a Markov decision process (MDP),
where a model is trained to iteratively select actions that
would maximize expected future content quality. This
transformation is not an easy task, and there is no stan-
dard way of handling it. Most RL PCG approaches re-
quire an adaptation of the input to be used during gen-
eration (Liu et al. 2021). There are also some interesting
cases where RL can be used in the absence of data, pro-

vided a system for the learning agent to interact with can
be set up (Barriga 2019).

7. Transformers: Transformers are a type of neural net-
work architecture that transform an input sequence into
an output sequence by learning context and tracking re-
lationships between sequence components (Khan et al.
2022). They rely on a self-attention mechanism (Vaswani
et al. 2017), which facilitates the capture of intricate
semantic relationships within high-dimensional feature
spaces. For example, PCGPT (Mohaghegh et al. 2023)
used transformers to iteratively generate complex and di-
verse game maps in the Sokoban game.

Other Methods
There are some methods that do not belong in the pre-
vious categories. We added this list for frequently used
methods in PCG that we could not fit in any other
category. It includes pseudo-random number generators
(PRNGs), generative grammars, generative graphs, and
fractals.
It is worth mentioning that these categories are not the
only means of generating content for games. There are
some articles about innovative ways of PCG. For exam-
ple, Wootton (2020a) uses quantum blur effects to create
maps and levels for various games. Wootton (2020b) also
uses quantum computation combined with graphs to gen-
erate maps.

(a) Pseudo-random Number Generator (PRNG): One
of the simplest and earliest approaches to procedural
game content generation is based on pseudo-random
number generation (PRNG). PRNG is an algorithm for
generating a sequence of numbers that approximates
the properties of random numbers (Barker et al. 2007).
A PRNG algorithm consists of three parts: the seed,
which is the initial value, the formula, which converts
the seed to output, and the distribution, which is the
variance of the results (Matsumoto et al. 2006).
PRNG was first used as a data compression method
because the generated sequence, while appearing ran-
dom, can be reproduced if the same seed and algo-
rithm are used. Combined with other methods, PRNG-
based techniques can be used to generate buildings,
textures, and items (Hendrikx et al. 2013). One of the
most famous forms of PRNGs is noise functions. Per-
lin noise and other noise functions are commonly used
for texture generation. Noise-generated textures can
be mapped easily on complex objects, unlike raster
2D images. The implementation of noise is relatively
simple and is present in many software shaders and
hardware graphics cards, such as NVIDIA’s (Hendrikx
et al. 2013). One of the main drawbacks of this method
is that images generated randomly pixel-by-pixel have
no meaningful structure. Many procedural techniques
address this issue by finding the balance between iter-
ative generation and random generation.

(b) Generative Grammars: Generative grammars, stem-
ming from Noam Chomsky’s study of languages in



the 1960s (Hendrikx et al. 2013), are sequences of
words (or “sentences”) with rules regarding how and
when to replace some words with other words. They
can be used to create correct objects from elements
encoded as letters/words. L-systems, split grammars,
wall grammars, and shape grammars, which have been
used for plant generation, linear map dungeon or story
generation, and quest generation, are all part of gen-
erative grammars. The downside of using this method
is that it is linear, so it cannot be used generate a non-
linear story. The possible solution is using generative
graphs, which we discuss in the following section.

(c) Generative Graphs: A graph is a set of vertices con-
nected by edges. Generative graphs are used as a solu-
tion for the linearity problem of generative grammars.
One well-known type of generative grammar is graph
grammars. A graph grammar is a set of rules that mod-
ify a graph. It is a framework introduced decades ago
(Pfaltz 1972; Ehrig, Pfender, and Schneider 1973).
One of the challenges of using graph grammars was
the need for an expert to design the rules, but now,
some researchers (Merrell 2023) have worked on cre-
ating the grammar automatically. The content gener-
ated using generative graphs is almost similar to that
generated by generative grammars, only they do not
have to be linear. One of the most famous products
of graph grammars is SpeedTree (Ehrig, Pfender, and
Schneider 1973), a well-known set of tools to gen-
erate trees in the entertainment industry (Columbia
Metropolitan Magazine 2022).

(d) Fractals: The term ”fractal” was coined and popu-
larized by Benoit B. Mandelbrot (Mandelbrot 1985).
It describes a broad set of shapes characterized by
non-integer dimension or an interesting mismatch of
dimension (Hausdorff dimension strictly exceeding
topological dimension), and detail at all scales or self-
similarity. Fractals are frequently used in procedu-
ral content generation because self-similarity seems
to mimic natural processes such as erosion and plant
growth. The subdivision method also maps well onto
level of detail implementations, allowing an ’infinite’
amount of detail to be included by recursively subdi-
viding the detail shown as the viewpoint moves closer
to the fractal object (Cristea and Liarokapis 2015).

Large Language Models
In the most recent year, there has been an explosion of re-
search on the applications of LLMs, and PCG is no excep-
tion. We found 17 papers during these years using LLMs as
part of their pipeline (with 3 other papers using combined
methods that integrated LLMs). Referring back to Figure 1,
we see that in 2023, the use of LLMs drastically increased
compared to previous years (13 papers and 2 other papers
with combined methods integrating LLMs). This coincides
with the release of ChatGPT and its underlying model, GPT-
3. These models are used to create narratives, NPC chat-
ter, and even mechanics. A famous example is Dungeon 2,
a text adventure game (Schrum, Volz, and Risi 2020). In

this game, players can type in any command and the system
can respond to it reasonably well, creating the first never-
ending text adventure. The system is built on OpenAI’s GPT-
2 language model (Volz et al. 2018), which was further fine-
tuned on a number of text adventure stories. 1001 Nights is
also another project that uses GPT as one of the main me-
chanics of its gameplay (Sun et al. 2023). Language mod-
els are also used in role-playing board games as an assis-
tant for the game masters (Zhu et al. 2023). LLMs can also
be used to create game levels. SCENECRAFT (Kumaran
et al. 2023b) is a framework that transforms high-level natu-
ral language instructions from authors into dynamic game
scenes that include NPC interactions, dialogue, emotions,
and gestures. The research by Todd et al. (2023), Nasir and
Togelius (2023), and Sudhakaran et al. (2024) also focus on
using LLMs to create levels for games. For example, the lat-
ter uses MarioGPT, a fine-tuned GPT-2 model designed to
generate Super Mario Bros levels based on textual prompts.

While current LLMs use transformers as their underlying
model, with the publication of GPT-3, a new form of service
has emerged. “Model as a service” (MaaS) involves deploy-
ing a model on a cloud-based infrastructure and offering its
functionalities through APIs or web interfaces. These com-
mercialized models, such as GPT-3, are often no longer open
for researchers to explore and study their underlying archi-
tecture, creating a black box that is only known to select few.
Our review shows that research published on using GPT-3
and its successors is no longer about training a new model,
but about best ways to use an existing pre-trained model that
is restricted by a private entity in many ways. While open
source LLMs do exist, in our review, the vast majority of
LLM usage was still with GPT-based LLMs.

Combined Methods
So far, we have discussed four different methods used for
generating content in games. However, these methods can
be combined. Many researchers have worked on using evo-
lutionary algorithms with machine learning methods. One of
the most popular examples of combining methods is the La-
tent Variable approach (Bontrager et al. 2018), which com-
bines unsupervised learning in the form of a GAN or VAE
with evolutionary computation to search for content in the
learned space of a GAN/VAE. In the context of games, this
approach has been employed to generate 2D game levels
like Super Mario Bros and Zelda levels (Schrum, Volz, and
Risi 2020; Volz et al. 2018). RL is also used in combination
with many different algorithms. For instance, Kumaran et
al. (2023a) creates game levels through a natural language
interface and evaluates the levels using RL. Instead of re-
lying solely on one method, combining different methods
can be very effective in generating new content. RL mod-
els and search-based algorithms are effective tools to repair
generated content (especially levels and structures) created
by other algorithms (like GANs and LSTMs). More recently,
combined methods integrating LLMs have also begun to
emerge (Kumaran et al. 2023a; Volden, Grbic, and Burelli
2023). While PCG research tends to focus on using existing
methods in innovative ways, these combined methods form
a rather emerging approach in solving complex problems.



Figure 2: A timeline breaking down research published 2019-2023 in select game-related conferences on the topic of PCG,
sorted by targeted content type. A few note-worthy LLM-based works are pointed out.

Analysis
In this section, we discuss the information obtained from re-
viewing selected papers. First, we talk about the trends in the
papers. Then, we discuss the gaps in current works, and fi-
nally, we outline future research directions based on current
trends.

Trends
Figure 2 shows an overview of 207 published papers using
different methods for the period of 2019-2023, broken down
by content type. Each row represents one type of content,
such as the aforementioned Game Space. The dots represent
papers in that particular year - the larger the dot, the more
papers we found. The dots are color-coded by its algorithm
type. We also gathered information about the 629 authors
who worked on these papers which is shown in Figure 3
based on the number of co-authored papers.

By looking at Figure 2 which is extracted using collected
articles, we notice that level generation is by far the most
researched topic in PCG. There are 102 papers, almost half
of the selected papers, focusing on level generation. Except
for a few works such as Baek et al. (2022), most of these pa-
pers focus on 2D level generation. This seems reasonable as
creating a 3D level is a far more complex task than creating
a 2D level. We also found that 2D platformers are a popular
genre in PCG, with Super Mario Bros. being the most used
environment, featured in 18 papers.

From Figure 2, it is evident that machine learning-based
algorithms have gained significant interest, and the trend of
using them in PCG continues to grow. Liapis et al. (2020)
mentions the consistent inclusion of vision papers and the
increased use of machine learning in games, either on its
own or in conjunction with PCG. Our data shows that the

trend has not slowed down in recent years. The emergence
of ChatGPT (OpenAI 2024) and the explosion of LLMs like
BERT and GPT in recent years have also affected content
generation in games. Many of the papers using LLMs were
published in the last year. It is interesting to note that we
found only five articles published before 2023 that used any
type of LLMs, and all five used GPT-2 (which is an open-
source model), with one also using BERT (another open-
source model) (Riddle 2022; van Stegeren and Myśliwiec
2021; Ammanabrolu et al. 2020; Pichlmair and Putney 2020;
Freiknecht and Effelsberg 2020). 2023 was the year when
many LLM-based research emerged, but also when peo-
ple moved on from open-source models to closed-source,
mostly GPT-based services. Among the works, two caught
our attention. These are combined methods with LLMs. Ku-
maran et al. (2023a) combined GPT-3.5 with the use of deep
reinforcement learning for level generation and selection,
while Volden et al. (2023) put together LLMs with a genetic
algorithm to generate rules for difficulty adaptation in a se-
rious game. We believe that these combined methods will
show versatility in many situations, and this is an open re-
search field with a lot of potential.

Gaps in Research
As mentioned, most of the research in level generation fo-
cuses on 2D level generation. 3D games are very popular in
the games industry, and level generation for 3D games is a
topic that needs further research and exploration.

Based on our findings, despite having innovative ideas in
the selected papers, many do not follow up on those ideas,
with some rare exceptions such as 1001 Nights (Sun et al.
2023). This gap between academic work and the games in-
dustry requires more discussion. One possible solution could



Figure 3: A word cloud of all authors in the published papers at the selected conferences during the 5 years. The size is
proportionate to the number of co-authored papers.

be creating a playable demo of a game with generated con-
tent (if feasible). This approach could increase the chances
of finding investors for the research. Of course, we cannot
ignore the ethical considerations when using tools such as
LLMs for generating game content (Melhart et al. 2023).

Possible Research Directions
Using the data we gathered, we believe that combined algo-
rithms, especially deep learning algorithms and LLMs, will
be a popular topic in the future. Instead of trying to generate
whole items or levels, researchers could focus on repairing
incorrect or improper content, reducing the effort needed to
create a finished product.

LLMs are still fresh, and there is much unknown poten-
tial in them that can be used in PCG. They can serve as AI
assistants for game designers, story and quest generators,
and even level generators that produce levels as a sequence
of words or sentences. Therefore, more research on the ap-
plications of LLMs could prove beneficial, especially open-
source alternatives to closed-source commercial MaaS.

Conclusion
In this survey, we discussed different categories of PCG al-
gorithms and the content that can be generated for games.
We categorized PCG algorithms into five sections: search-
based methods, machine learning-based methods, other
methods, LLMs (MaaS), and combined methods. We also
selected PCG related papers published between 2019-2023
and analyzed them to identify trends, gaps in current work,
and possible future research directions.

The increasing use of LLMs for generative tasks is a re-
cent development that was unheard of until about five years
ago. Combining deep learning methods, such as GANs and

RL, with other algorithms in content generation is another
interesting trend that has been gaining more attraction re-
cently. Both of these trends are built on advancements in
deep learning, which have made machine learning methods
effective for completely new classes of problems.

Although a variety of generated content types (e.g., lev-
els, sound, maps, textures) have been investigated, each sub-
category can be further explored to gain more insights. In-
depth research on the best-suited algorithms for generating
each type of content would also be beneficial. Additionally,
a study dedicated to evaluation algorithms used to test gen-
erated content could be a valuable addition to this field.

Acknowledgments
This research was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) Discovery
Grant. We thank members of the Serious Games Research
Group and the anonymous reviewers for their feedback.

References
Abraham, F.; and Stephenson, M. 2023. Utilizing genera-
tive adversarial networks for stable structure generation in
angry birds. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 19, 2–12.
A.I.Design. 1980. Rogue.
Amato, A. 2017. Procedural content generation in the game
industry. Game Dynamics: Best Practices in Procedural and
Dynamic Game Content Generation, 15–25.
Aminian, Parsa. 2023. Procedural Art Generation
and Dynamic Content Creation in Games. https:
//www.artstation.com/blogs/pixunegroup/2l1O/procedural-



art-generation-and-dynamic-content-creation-in-games.
Accessed: 2024-07-03.
Ammanabrolu, P.; Cheung, W.; Tu, D.; Broniec, W.; and
Riedl, M. 2020. Bringing stories alive: Generating interac-
tive fiction worlds. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 16, 3–9.
Baek, I.-C.; Ha, T.-G.; Park, T.-H.; and Kim, K.-J. 2022. To-
ward Cooperative Level Generation in Multiplayer Games:
A User Study in Overcooked! In 2022 IEEE Conference on
Games (CoG), 276–283. IEEE.
Ballabio, M.; and Loiacono, D. 2019. Heuristics for plac-
ing the spawn points in multiplayer first person shooters. In
2019 IEEE Conference on Games (CoG), 1–8. IEEE.
Barker, E. B.; Barker, W. C.; Burr, W. E.; Polk, W. T.; and
Smid, M. E. 2007. Sp 800-57. recommendation for key man-
agement, part 1: General (revised).
Barriga, N. A. 2019. A short introduction to procedural con-
tent generation algorithms for videogames. International
Journal on Artificial Intelligence Tools, 28(02): 1930001.
Bentley, P. J.; Kumar, S.; et al. 1999. Three ways to grow
designs: A comparison of embryogenies for an evolutionary
design problem. In GECCO, volume 99, 35–43.
Bhaumik, D.; Togelius, J.; Yannakakis, G. N.; and Khalifa,
A. 2023. Lode enhancer: Level co-creation through scaling.
In Proceedings of the 18th International Conference on the
Foundations of Digital Games, 1–8.
Bontrager, P.; Roy, A.; Togelius, J.; Memon, N.; and Ross,
A. 2018. Deepmasterprints: Generating masterprints for dic-
tionary attacks via latent variable evolution. In 2018 IEEE
9th International Conference on Biometrics Theory, Appli-
cations and Systems (BTAS), 1–9. IEEE.
Botea, A.; and Bulitko, V. 2023. Generating and Solving
Champion-Level Romanian Crosswords Puzzles. In 2023
IEEE Conference on Games (CoG), 1–4. IEEE.
Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P.
2012. Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation and
transcription. arXiv preprint arXiv:1206.6392.
Browne, C. B. 2008. Automatic generation and evaluation of
recombination games. Ph.D. thesis, Queensland University
of Technology.
Chen, E.; Sydora, C.; Burega, B.; Mahajan, A.; Abdullah,
A.; Gallivan, M.; and Guzdial, M. 2020. Image-to-level:
Generation and repair. In Proceedings of the AAAI Con-
ference on Artificial Intelligence and Interactive Digital En-
tertainment, volume 16, 189–195.
Ching, W.; Zhang, S.; and Ng, M. 2007. On multi-
dimensional Markov chain models. Pacific Journal of Opti-
mization, 3(2): 235–243.
Columbia Metropolitan Magazine. 2022. speedtree-takes-
hollywood. https://shaggydev.com/2022/03/16/generative-
grammars. Accessed: 2024-07-03.
Coutinho, F.; and Chaimowicz, L. 2022. On the challenges
of generating pixel art character sprites using GANs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 18, 87–94.

Cristea, A.; and Liarokapis, F. 2015. Fractal nature-
generating realistic terrains for games. In 2015 7th Interna-
tional Conference on Games and Virtual Worlds for Serious
Applications (VS-Games), 1–8. IEEE.
Davoodi, O.; Ashtiani, M.; and Rajabi, M. 2022. An ap-
proach for the evaluation and correction of manually de-
signed video game levels using deep neural networks. The
Computer Journal, 65(3): 495–515.
De Carli, D. M.; Bevilacqua, F.; Pozzer, C. T.; and
d’Ornellas, M. C. 2011. A survey of procedural content gen-
eration techniques suitable to game development. In 2011
Brazilian symposium on games and digital entertainment,
26–35. IEEE.
Drageset, O.; Winands, M. H.; Gaina, R. D.; and Perez-
Liebana, D. 2019. Optimising level generators for general
video game AI. In 2019 IEEE conference on games (CoG),
1–8. IEEE.
Duro, J. A.; and de Oliveira, J. V. 2008. Particle swarm opti-
mization applied to the chess game. In 2008 IEEE Congress
on Evolutionary Computation (IEEE World Congress on
Computational Intelligence), 3702–3709. IEEE.
Efros, A. A.; and Leung, T. K. 1999. Texture synthesis
by non-parametric sampling. In Proceedings of the sev-
enth IEEE international conference on computer vision, vol-
ume 2, 1033–1038. IEEE.
Ehrig, H.; Pfender, M.; and Schneider, H. J. 1973. Graph-
grammars: An algebraic approach. In 14th Annual sympo-
sium on switching and automata theory (swat 1973), 167–
180. IEEE.
Fine, S.; Singer, Y.; and Tishby, N. 1998. The hierarchical
hidden Markov model: Analysis and applications. Machine
learning, 32: 41–62.
Forbes Magazine. 2023. Council post: The Gaming In-
dustry: A behemoth with unprecedented global reach.
https://www.forbes.com/sites/forbesagencycouncil/
2023/11/17/the-gaming-industry-a-behemoth-with-
unprecedented-global-reach. Accessed: 2024-07-03.
Freiknecht, J.; and Effelsberg, W. 2020. Procedural gener-
ation of interactive stories using language models. In Pro-
ceedings of the 15th International Conference on the Foun-
dations of Digital Games, 1–8.
Gerhold, M.; and Tijben, K. 2023. Computer Aided Con-
tent Generation–A Gloomhaven Case Study. In Proceedings
of the 18th International Conference on the Foundations of
Digital Games, 1–10.
Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. Advances in neural in-
formation processing systems, 27.
Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.; and
Wierstra, D. 2015. Draw: A recurrent neural network for
image generation. In International conference on machine
learning, 1462–1471. PMLR.



Gumin, M. 2021. Wavefunctioncollapse: Bitmap and
tilemap generation from a single example with the help
of ideas from Quantum Mechanics. https://github.com/
mxgmn/WaveFunctionCollapse. Accessed: 2024-07-03.
Hendrikx, M.; Meijer, S.; Van Der Velden, J.; and Iosup, A.
2013. Procedural content generation for games: A survey.
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), 9(1): 1–22.
Huang, L.; and Sun, X. 2023. Create ice cream: Real-time
creative element synthesis framework based on gpt3. 0. In
2023 IEEE Conference on Games (CoG), 1–4. IEEE.
Juego Studio. 2023. how long does it take to develop video
game. https://www.juegostudio.com/blog/how-long-does-
it-take-to-develop-video-game. Accessed: 2024-07-03.
Kang, S.; Ok, Y.; Kim, H.; and Hahn, T. 2020. Image-to-
image translation method for game-character face genera-
tion. In 2020 IEEE Conference on Games (CoG), 628–631.
IEEE.
Kennedy, J.; and Eberhart, R. 1995. Particle swarm opti-
mization. In Proceedings of ICNN’95-international confer-
ence on neural networks, volume 4, 1942–1948. ieee.
Kernighan, B. W.; and Pike, R. 2006. The practice of pro-
gramming. Addison-Wesley.
Khan, S.; Naseer, M.; Hayat, M.; Zamir, S. W.; Khan, F. S.;
and Shah, M. 2022. Transformers in vision: A survey. ACM
computing surveys (CSUR), 54(10s): 1–41.
Kreitzer, M.; Ashlock, D.; and Pereira, R. 2019. Automatic
generation of diverse cavern maps with morphing cellular
automata. In 2019 IEEE Conference on Games (CoG), 1–8.
IEEE.
Kumaran, V.; Carpenter, D.; Rowe, J.; Mott, B.; and Lester,
J. 2023a. End-to-end procedural level generation in edu-
cational games with natural language instruction. In 2023
IEEE Conference on Games (CoG), 1–8. IEEE.
Kumaran, V.; Mott, B.; and Lester, J. 2019. Generating
game levels for multiple distinct games with a common la-
tent space. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 15, 102–108.
Kumaran, V.; Rowe, J.; Mott, B.; and Lester, J. 2023b.
Scenecraft: Automating interactive narrative scene genera-
tion in digital games with large language models. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 19, 86–96.
Liapis, A. 2020. 10 Years of the PCG workshop: Past and
Future Trends. In Proceedings of the 15th International
Conference on the Foundations of Digital Games, 1–10.
Liu, J.; Snodgrass, S.; Khalifa, A.; Risi, S.; Yannakakis,
G. N.; and Togelius, J. 2021. Deep learning for procedu-
ral content generation. Neural Computing and Applications,
33(1): 19–37.
Machado, T.; Gopstein, D.; Wang, A.; Nov, O.; Nealen, A.;
and Togelius, J. 2019. Evaluation of a recommender system
for assisting novice game designers. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 15, 167–173.

Makhmutov, M. 2019. Adaptive game soundtrack gener-
ation based on music transcription. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 15, 216–218.
Mandelbrot, B. B. 1985. Self-affine fractals and fractal di-
mension. Physica scripta, 32(4): 257.
Massive software. 2024. about. https://www.
massivesoftware.com/about.html. Accessed: 2024-07-
03.
Matsumoto, M.; Saito, M.; Haramoto, H.; and Nishimura,
T. 2006. Pseudorandom Number Generation: Impossibility
and Compromise. J. Univers. Comput. Sci., 12(6): 672–690.
Medsker, L. R.; Jain, L.; et al. 2001. Recurrent neural net-
works. Design and Applications, 5(64-67): 2.
Melhart, D.; Togelius, J.; Mikkelsen, B.; Holmgård, C.; and
Yannakakis, G. N. 2023. The ethics of AI in games. IEEE
Transactions on Affective Computing, 15(1): 79–92.
Merino, T.; Negri, R.; Rajesh, D.; Charity, M.; and Togelius,
J. 2023. The five-dollar model: generating game maps and
sprites from sentence embeddings. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 19, 107–115.
Merrell, P. 2023. Example-based procedural modeling using
graph grammars. ACM Transactions on Graphics (TOG),
42(4): 1–16.
Mitsis, K.; Kalafatis, E.; Zarkogianni, K.; Mourkousis, G.;
and Nikita, K. S. 2020. Procedural content generation based
on a genetic algorithm in a serious game for obstructive
sleep apnea. In 2020 IEEE Conference on Games (CoG),
694–697. IEEE.
Mittermueller, M.; Ye, Z.; and Hlavacs, H. 2022. EST-GAN:
Enhancing style transfer gans with intermediate game render
passes. In 2022 IEEE Conference on Games (CoG), 25–32.
IEEE.
Mohaghegh, S.; Dehnavi, M. A. R.; Abdollahinejad, G.; and
Hashemi, M. 2023. PCGPT: Procedural Content Generation
via Transformers. arXiv preprint arXiv:2310.02405.
Nasir, M. U.; and Togelius, J. 2023. Practical PCG through
large language models. In 2023 IEEE Conference on Games
(CoG), 1–4. IEEE.
Ng, A.; et al. 2011. Sparse autoencoder. CS294A Lecture
notes, 72(2011): 1–19.
OpenAI. 2024. ChatGPT: Large Language Model. Ac-
cessed: 2024-07-03.
Osborn, J. C.; Dickinson, M.; Anderson, B.; Summerville,
A.; Denner, J.; Torres, D.; Wardrip-Fruin, N.; and Mateas,
M. 2019. Is your game generator working? Evaluating Gem-
ini, an intentional generator. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 15, 59–65.
Pachet, F. 2004. Beyond the cybernetic jam fantasy: The
continuator. IEEE Computer Graphics and Applications,
24(1): 31–35.
Pfaltz, J. L. 1972. Web grammars and picture description.
Computer Graphics and Image Processing, 1(2): 193–220.



Pichlmair, M.; and Putney, C. 2020. Procedural genera-
tion for divination and inspiration. In Proceedings of the
15th International Conference on the Foundations of Digi-
tal Games, 1–7.

Prasetya, H. A.; and Maulidevi, N. U. 2016. Search-based
Procedural Content Generation for Race Tracks in Video
Games. International Journal on Electrical Engineering &
Informatics, 8(4).

Prins, V. L.; Prins, J.; Preuss, M.; and Gómez-Maureira,
M. A. 2023. Storyworld: Procedural quest generation rooted
in variety & believability. In Proceedings of the 18th Inter-
national Conference on the Foundations of Digital Games,
1–4.

Riddle, A. 2022. A hybrid approach to co-creative story au-
thoring using grammars and language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 18, 282–284.

Risi, S.; and Togelius, J. 2020. Increasing generality in ma-
chine learning through procedural content generation. Na-
ture Machine Intelligence, 2(8): 428–436.

Russell, S. J.; and Norvig, P. 2016. Artificial intelligence: a
modern approach. Pearson.

Sarkar, A.; Summerville, A.; Snodgrass, S.; Bentley, G.; and
Osborn, J. 2020. Exploring level blending across platform-
ers via paths and affordances. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 16, 280–286.

Schmidhuber, J. 2015. Deep learning in neural networks:
An overview. Neural networks, 61: 85–117.

Schrum, J.; Volz, V.; and Risi, S. 2020. Cppn2gan: Combin-
ing compositional pattern producing networks and gans for
large-scale pattern generation. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference, 139–
147.

Shaker, N.; Togelius, J.; and Nelson, M. J. 2016. Procedural
content generation in games. Computational Synthesis and
Creative Systems.

Siler, C. 2022. Open-world narrative generation to answer
players’ questions. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 18, 307–310.

Snodgrass, S.; and Ontanón, S. 2016. Learning to generate
video game maps using markov models. IEEE transactions
on computational intelligence and AI in games, 9(4): 410–
422.

Snodgrass, S.; and Sarkar, A. 2020. Multi-domain level gen-
eration and blending with sketches via example-driven bsp
and variational autoencoders. In Proceedings of the 15th in-
ternational conference on the foundations of digital games,
1–11.

Song, A.; and Whitehead, J. 2019. TownSim: Agent-based
city evolution for naturalistic road network generation. In
Proceedings of the 14th International Conference on the
Foundations of Digital Games, 1–9.

Song, Y.; Kim, H.; Yoo, T.; Bae, B.-c.; and Cheong, Y.-G.
2020. An intelligent storytelling system for narrative con-
flict generation and resolution. In 2020 IEEE Conference on
Games (CoG), 192–197. IEEE.
Sudhakaran, S.; González-Duque, M.; Freiberger, M.;
Glanois, C.; Najarro, E.; and Risi, S. 2024. Mariogpt: Open-
ended text2level generation through large language models.
Advances in Neural Information Processing Systems, 36.
Summerville, A.; and Mateas, M. 2016. Super mario as a
string: Platformer level generation via lstms. arXiv preprint
arXiv:1603.00930.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgård, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGML). IEEE Transactions on Games, 10(3): 257–270.
Sun, Y.; Li, Z.; Fang, K.; Lee, C. H.; and Asadipour, A. 2023.
Language as reality: a co-creative storytelling game experi-
ence in 1001 nights using generative AI. In Proceedings of
the AAAI Conference on Artificial Intelligence and Interac-
tive Digital Entertainment, volume 19, 425–434.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Świechowski, M.; Godlewski, K.; Sawicki, B.; and
Mańdziuk, J. 2023. Monte Carlo tree search: A review of
recent modifications and applications. Artificial Intelligence
Review, 56(3): 2497–2562.
Todd, G.; Earle, S.; Nasir, M. U.; Green, M. C.; and To-
gelius, J. 2023. Level generation through large language
models. In Proceedings of the 18th International Confer-
ence on the Foundations of Digital Games, 1–8.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2010. Search-based procedural content generation. In
Applications of Evolutionary Computation: EvoApplicatons
2010: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLI-
GENCE, EvoNUM, and EvoSTOC, Istanbul, Turkey, April
7-9, 2010, Proceedings, Part I, 141–150. Springer.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne,
C. 2011. Search-based procedural content generation: A tax-
onomy and survey. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3): 172–186.
van Stegeren, J.; and Myśliwiec, J. 2021. Fine-tuning GPT-
2 on annotated RPG quests for NPC dialogue generation.
In Proceedings of the 16th International Conference on the
Foundations of Digital Games, 1–8.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Volden, T.; Grbic, D.; and Burelli, P. 2023. Procedu-
rally generating rules to adapt difficulty for narrative puzzle
games. In 2023 IEEE Conference on Games (CoG), 1–4.
IEEE.
Volz, V.; Schrum, J.; Liu, J.; Lucas, S. M.; Smith, A.; and
Risi, S. 2018. Evolving mario levels in the latent space of a
deep convolutional generative adversarial network. In Pro-
ceedings of the genetic and evolutionary computation con-
ference, 221–228.



Wootton, J. R. 2020a. Procedural generation using quan-
tum computation. In Proceedings of the 15th International
Conference on the Foundations of Digital Games, 1–8.
Wootton, J. R. 2020b. A quantum procedure for map gen-
eration. In 2020 IEEE Conference on Games (CoG), 73–80.
IEEE.
Yannakakis, G. N.; and Togelius, J. 2018. Artificial intelli-
gence and games, volume 2. Springer.
Zhang, Y.; Zhang, G.; and Huang, X. 2022. A survey of
procedural content generation for games. In 2022 Interna-
tional Conference on Culture-Oriented Science and Tech-
nology (CoST), 186–190. IEEE.
Zhu, A.; Martin, L.; Head, A.; and Callison-Burch, C. 2023.
CALYPSO: LLMs as Dungeon Master’s Assistants. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 19, 380–390.


