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Abstract

This paper explores adaptive problem solving with a game de-
signed to support the development of problem-solving skills.
Using an adaptive, Al-powered puzzle game, our adaptive
problem-solving system dynamically generates pathfinding-
based puzzles using a genetic algorithm, tailoring the diffi-
culty of each puzzle to individual players in an online real-
time approach. A player-modeling system records user in-
teractions and informs the generation of puzzles to approx-
imate a target difficulty level based on various metrics of
the player. By combining procedural content generation with
online adaptive difficulty adjustment, the system aims to
maintain engagement, mitigate frustration, and maintain an
optimal level of challenge. A pilot user study investigates
the effectiveness of this approach, comparing different types
of adaptive difficulty systems and interpreting players’ re-
sponses. This work lays the foundation for further research
into emotionally informed player models, advanced Al tech-
niques for adaptivity, and broader applications beyond gam-
ing in educational settings.

Introduction

The increased prevalence of online learning intensified is-
sues in students, such as anxiety, stress, and a lack of con-
fidence in learners (Adnan and Anwar 2020). These online
learning based issues have become increasingly prominent,
as the absence of face-to-face interaction and personalized
support can magnify feelings of isolation and frustration.
Traditional online learning environments often adopt a one-
size-fits-all approach, failing to account for the diverse emo-
tional and cognitive needs of students (Sit et al. 2005).
Recently, research on improving various e-learning ele-
ments have gained immense traction, due to the increasing
access to technologically-based tools at a large scale. This
holds particularly true considering the rapid advancement
of artificial intelligence (AI) technologies and various inte-
grations for the Internet of Things (IoT), challenging long-
standing traditional models of education. Many of these
technological advancements were bred from the COVID-
19 pandemic, in which education was forcibly shifted from
in-person, classroom-based instruction to online and virtual

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

spaces. As such, a growing need for scalable, robust, and
user-centric educational tools has been recognized.

Virtual learning environments are often identified by ex-
plicitly defined information spaces, integrating heteroge-
neous technologies and pedagogical approaches with the
overarching goal of aiding some form of education (Dillen-
bourg, Schneider, and Synteta 2002). These defined infor-
mation spaces can be presented in many forms, including
websites, standalone interactive software, or even serious
games (Garcia-Redondo et al. 2019). Virtual learning envi-
ronments can often be extended to incorporate Al technolo-
gies, such as procedural content generation (PCG) (Shaker,
Togelius, and Nelson 2016). PCG techniques can be used to
create digital content in real time, which when paired with
some form of player or user modeling, can produce adaptive
and dynamic systems that adapt to users’ needs.

A common method for creating procedurally generated
content is genetic algorithms (GA), in which a process mim-
icking biological evolution is used to find and optimize so-
lutions to various problems (Mitsis et al. 2020). These algo-
rithms are based on natural selection, in which a population
of individual candidate solutions is modified over many it-
erations, eventually “evolving” towards an optimal solution
(Scirea 2020).

In this research, we present an Adaptive Problem-Solving
Game (APSG), powered by GA and player modeling, in
which puzzles are dynamically generated to be tailored to
each individual student’s difficulty level. The novelty lies in
its integration of a genetic algorithm with “real-time” puzzle
generation, tailored to individual skill levels, unlike tradi-
tional adaptive systems which rely solely on offline analysis.
Our research addresses three core research questions:

* RQ1: Does a real-time genetic algorithm-based puzzle-
generation system, informed by player modeling metrics,
reduce player frustration more effectively compared to
similar approaches?

* RQ2: Do puzzles dynamically generated by a cus-
tomized genetic algorithm informed by real-time player
interactions align closely with players’ perceived optimal
difficulty and provide a clear sense of skill progression?

* RQ3: When dynamically adjusting puzzle difficulty in
real-time, is “time-on-task* alone sufficient to accurately
inform the adaptive puzzle-generation process, compared



to using multiple player metrics?

The paper’s primary contribution is a comparative evalu-
ation of adaptive-difficulty approaches, accompanied by an
analysis of how players respond to each one. Its secondary
contribution is the design of an adaptive puzzle generator
that produces tasks across a calibrated difficulty spectrum
by means of a customized genetic algorithm.

Related Works

It is well known that personalized learning materials, partic-
ularly in the form of one-on-one tutoring is extremely ben-
eficial to educational success (Bloom 1984). Under the best
learning conditions that can be devised (personalized tutor-
ing), the average student is two standard deviations above
the average control student taught under conventional meth-
ods (Bloom 1984). However, the cost of personalized edu-
cation can often be costly, time consuming, and emotionally
draining (Sharif and Elmedany 2022). Higher levels of tech-
nological adaptation in the education sector can have sig-
nificant impact as it can mitigate common issues with large
scale education such as increasing numbers of students, lim-
ited public funding, and increased demand for higher-quality
education (Sharif and Elmedany 2022).

This holds particularly true for online-based education,
which has often been forced upon students as part of the
new post-pandemic norm. A study by W.H. Sit et al. ex-
plored students’ views of online learning initiatives, eval-
uating both the positive and negative experiences of stu-
dents. They found that while most students were generally
on board with online-based education, as it provides time-
saving and easy access to material, they desired more per-
sonalized learning materials and wished for a more interac-
tive system (Sit et al. 2005).

Al has been the topic of many recent research studies,
particularly in its relation to education, serious games, and
online learning. There exist a multitude of varying tech-
niques, which when used effectively, can improve educa-
tional standards (Holmes and Tuomi 2022). Algorithmic ap-
proaches, such as rule-based Al (Swiechowski and Slezak
2018) or biologically-inspired genetic algorithms (Darejeh
et al. 2024; Scirea 2020) can provide heuristic-based ap-
proaches to both content delivery, and adaptivity. Machine
learning (ML) based approaches (Ciolacu and Svasta 2021;
Sharif and Elmedany 2022) tend to focus on data-driven
models, in which large amounts of data are used to model
information surrounding students or players, or analyze var-
ious feedback mechanisms in the learning pipeline. Rein-
forcement learning (RL) approaches (Flores, Alfaro, and
Herrera 2019; Kardan and Speily 2010) provide Al systems
which can be trained to dynamically adjust learning path-
ways or game mechanics based on reward-based, trial-and-
error interactions. Further, there exists Hybrid models which
can either use multiple Al-approaches in tandem, or, pick
and choose various individual system components tailored
towards specific needs, leveraging the strengths of each,
such as rule-based systems for initial scaffolding and ML
models for fine-tuned personalization (Hare, Tang, and Zhu
2023).

Garavaglia et al. (2022) proposed personality-biased
agents, powered by algorithmically based Al frameworks,
that can dynamically adapt their content based on the user’s
current state. They showcase forms of player modeling, in
which emotional states of the user can be analytically read
and consequently examined, to update the Al system ac-
cordingly. Al techniques have further been used for learning
analytics for serious games. Perez-Colado J. et. al. (2018)
proposed a learning analytics system from the perspective
of data-driven user modeling, paying specific attention to
educational serious games. They recommend an integrated,
user-centric approach, in which educational and game com-
munities must work together to provide complex, multi-
level, or hierarchical metrics for analysis.

Virtual learning environments are digital virtual spaces
that facilitate the delivery of curriculum content, assessment,
and evaluation activities for students (Caprara and Caprara
2022). Garcia-Redondo et al. (2019) explored the impact
of a serious game based on multiple intelligences primarily
focussed on attention and ADHD, revealing significant im-
provements in visual attention. A serious game was also pro-
posed to reduce perioperative anxiety and pain in children
undergoing ambulatory surgery (Verschueren et al. 2019).

El Khayat et al. (2012) developed an intelligent serious
game for children with learning disabilities, focusing on in-
tervention as early as kindergarten, to enhance learner ca-
pabilities. They presented an intelligent web-based adaptive
serious game, providing us with a strong methodology for
tailoring interactive and adaptive gamified elements to stu-
dents with unique needs. Flores et al. (2019) presented a per-
sonalized model that assesses students’ skills using pretest,
leveraging case-based reasoning and RL (Q-Learning) to op-
timize the sequence of learning resources, aiming to pre-
vent issues like anxiety or boredom according to flow theory.
Their work provides us a metric for determining success.

Kardan and Speily (2010) introduced an evolving web-
based learning system capable of adapting itself to individ-
ual learners, by retrieving relevant content from the web,
personalizing it based on learners’ characteristics and prefer-
ences, addressing challenges unique to lifelong learning sce-
narios through a hybrid machine learning technique. Lopes
and Lopes (2022) reviewed dynamic difficulty adjustment
methods, another form of adaptation to learners.

The literature indicates a growing interest in adap-
tive learning systems; nonetheless, most studies implement
adaptations offline, analyzing learner data retrospectively
rather than adjusting content in real-time (Kabudi, Pappas,
and Olsen 2021). Previous work has also concentrated on
the technical design of such systems, offering few rigorous
comparisons between adaptive and non-adaptive approaches
under equivalent instructional conditions. In addition, time-
on-task (how long it takes a user to complete a task) remains
the most prevalent metric for driving adaptivity, yet its stan-
dalone effectiveness has rarely been examined. This study
addresses these gaps by evaluating a real-time online adap-
tive system against a non-adaptive baseline and by isolating
a time-based measurement to assess its utility for guiding
adaptation.
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Figure 1: Example of a difficulty-5 puzzle.
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Figure 2: Example of a difficulty-5 puzzle with a solution
path drawn by the player.

Methodology and Implementation

This section provides a detailed overview of our APSG
framework together with the underlying algorithms that sup-
port it. Our research does not aim to invent a novel adaptive
algorithm. However, our implementation incorporates sev-
eral tailored modifications that may assist researchers wish-
ing to replicate or extend the approach.

APSG as a Puzzle Game

We designed an APSG using the Unity engine to foster
problem-solving by presenting players with pathfinding-
based puzzles to solve. As players advance, the system se-
lects puzzles calibrated to their current ability. The goal of
each puzzle is to find the correct path from the start node
to the end node while picking up various cargo pieces along
the way. These puzzles were based on the puzzle game Cos-
mic Express (Hazelden, Davis, and Tyu 2017). We chose this
game because of its simple, easy-to-learn rules and straight-
forward difficulty evaluation, which is essential in our adap-
tive system.

The puzzle is represented on an n X n grid, in which the
player needs to draw a path from the starting node to the
end node (Figures 1 and 2). Path pieces cannot overlap each
other, the border of the puzzle, or “special” points. There
can only be a single path with no branches. The “special”
pieces (cargo) must be picked up at specific “pickup” loca-
tions, and deposited at specific ”dropoff” locations. Once a
path is drawn, a “container”” automatically traverses the path
one tile at a time, in the direction and order that the path has
been drawn, and can carry exactly one cargo at any given
time. Cargo is considered picked up or dropped off if at any
time, this container passes a pickup or dropoff point adja-
cently. Importantly, the container can only “hold” one cargo
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Figure 3: Example of a solved difficulty-5 puzzle, where all
the cargo boxes are dropped off in the correct destinations.

piece at a time, so careful planning of the path to ensure the
order of operations for visiting each of the pickup or dropoff
points needs to be considered. A particular puzzle is solved
if:
* The container can start at the start point and end at the
end point, connected via a contiguous path.

* Once the container reaches the end point, there are no
outstanding cargo pieces left at any of the pickup points.

» Each dropoff point contains exactly one cargo piece.

As the player is allowed to draw only one path at a time
with no branches allowed, the container has only one path
to follow. It either completes the puzzle or not, which deter-
mines whether the puzzle is solved. Figure 3 shows the end
result of the container going through the entire path, having
picked up and dropped off cargo boxes along the way.

Puzzles can have many solutions (paths), often represent-
ing easier puzzles, or very few solutions, conversely repre-
senting difficult puzzles. The difficulty of the puzzle can be
represented in a few different ways. First, the size of the grid.
Larger grid sizes demand longer paths, which often add to
the complexity of puzzles, particularly when combined with
other difficulty metrics. Secondly, the number of pickup and
dropoff locations. As these “special” points increase in num-
ber, a given solution becomes more difficult to achieve as the
possible order of visiting various locations increases in com-
plexity. Finally, the specific location of special pieces. Spe-
cial pieces might be placed in such a way that once visiting
one, another becomes inaccessible, necessitating a redesign
of the solution. Each puzzle that is presented to the user has
been dynamically generated in real time, facilitated through
the use of a genetic algorithm.

Genetic Algorithm and Puzzle Generation

The entirety of the puzzle generation pipeline is facilitated
through the use of a genetic algorithm. Functional design de-
cisions were made such that the GA can generate puzzles of
varying difficulty, connect to the underlying player model-
ing methods, and provide generation speed to support “real-
time” generation. The genetic algorithm generates a set of
path and special points that represent the solution of the puz-
zle. These set of points are stored as an n X n character grid,
based on the size of the puzzle. The GA (Algorithm 1) is de-
signed in such a way to optimize difficulty to a given input
difficulty ranging from one to ten. The GA is based on the



Algorithm 1: Genetic Algorithm

Algorithm 2: Crossover Function

Input: Population P, size IV, generation limit G
Parameter: Mutation rate m
Qutput: Best solution B

1: Initialize gen < 0, B < null, best F'it < 0
2: while gen < G do

3:  F <« 0, maxFit < 0, best < null

4 for each cin P do

5: f + Fitness(c)

6: F+F+f

7 if f > maxF'it then
8: mazFit + f

9: best + ¢

10: end if

11:  end for

12:  if maxFit > bestF'it then
13: bestFit <+ maxFit

14: B + Clone(best)

15:  endif

16:  gen < gen+1

17: P+ {}

18:  while |P’| < N do

19: p1 < Select(P)

20: p2 + Select(P)

21: (c1,¢a) + Crossover(py, p2)
22: Mutate(c1, m)

23: Mutate(ca, m)

24: Add ¢y, co to P’

25:  end while

26: P« P!

27: end while
28: QOutput: B

NSFI-2POP structure (Scirea 2020). This section describes
the details of the system, where domain-specific choices had
to be made that deviate from more traditional structures.

Data Representation Puzzles are internally represented
as a two-dimensional character grid. Encoded in this grid
are various characters that represent specific elements of the
puzzle (Table 1). This representation allows for easy display
of relevant puzzles and allows puzzles to be stored or loaded
as needed.

Character Mapping
# empty space
X path
P pickups
D dropoffs
o obstacles / border
S start point
E end point

Table 1: Puzzle Character Mapping.

Crossover Function Traditional genetic crossover func-
tions take in two one-dimensional coded data points and

Input: Parent puzzles P, P
Output: Child puzzles Cy, Cs
1: Select a crossover point
2: Swap puzzle sections between P; and P; to create C'y
and Cy
3: Adjust path using BFS
4: Adjust special points using distance-based metrics
5: Validate and finalize child puzzles

then split them based on some criteria, to produce two corre-
sponding child data points. The goal of the crossover func-
tion for the described APSG is to mix the path and grid
configurations of two parent puzzles to create new children.
Each child inherits part of the path and grid structure from
one parent, and the rest from the other - aiming to blend
traits and explore new puzzle variations. A random column
is chosen as the crossover point, constrained to ensure that
it is not too close to the puzzle edges while allowing parents
to be merged non-symmetrically to increase variability. The
child grids are built by the following two steps, forming a
simple two-part combination:

1. Copying the left side of the grid from one parent.
2. Copying the right side of the grid from the other parent.

The path (solution) is split at the crossover column, where:

1. Child 1 takes the first half of Parent 1’s path and the sec-
ond half of Parent 2’s path.

2. Child 2 does the reverse - taking the first half from Parent
2 and second half from Parent 1.

Combining the paths often “breaks” the solution, in either
the path structure or special point representation. For the
path, the crossover often directly creates gaps or overlaps,
where two paths are no longer connected. As such, diago-
nal moves are corrected and a Breadth-First Search (BFS)
is used to fill in missing steps between the broken path seg-
ments. For the “special” points, the children’s pickup and
dropoff points are recalculated using a distance-based met-
ric that subdivides the path into segments, selecting candi-
date tiles within these segments. Pickups and dropoffs are
then alternately placed at random among valid candidates,
ensuring an equal number of each while avoiding forbidden
positions. Paths are finalized by removing any duplicates or
invalid moves and are checked for solvability. Algorithm 2
shows the entire process.

Fitness Function The fitness function is used to evalu-
ate the current analytical “difficulty” of a given puzzle. It
is essential that the genetic algorithm can optimize to any
given input difficulty, including “medium” or “subjectively-
defined” level difficulties. Difficulty was assigned a discrete
1-10 scale to align with our user study design, although the
GA could optimize to scores on a broader range of difficulty
levels. We define minimum and maximum values for various
metrics that are then integrated to provide a current puzzle
difficulty.



Factor Min Value | Max Value
Path Length 8 50
Corners 0 20
Empty Space 20 5
Pickups 1 12
Orthogonal Pickups 0 2

Table 2: Fitness function components and their value ranges.
Target values are interpolated based on puzzle difficulty.

The total score is then calculated as a weighted sum of the
fitness factors:

score = Z max(0,tary — |tary — acty|) x weight
fer

In this formula, F'is the set of fitness components, tar is
the target value for each factor, acty is the actual observed
value in the puzzle, and weight s is the weight assigned to
each component. Thus, we are able to obtain puzzles with a
variety of “scores”, which can easily be mapped to a corre-
sponding difficulty level between one and ten. This system
can be easily tweaked to provide an extensive array of vary-
ing difficulties and their corresponding puzzles. However,
the one to ten scale was implemented to facilitate the ease of
use for a study. Table 2 shows the range of values.

Adaptive Difficulty and Player Modeling

The target optimization difficulty needed by the genetic al-
gorithm is provided by a player modeling system. This sys-
tem records information about the current state of the puz-
zles as well as the current metrics of the player. It then makes
a suggestion in terms of difficulty adjustment. The system
suggests the difficulty of the puzzles should:

1. Increase, as the puzzles are too easy, or,
2. Decrease, as the puzzles are too difficult, or,

3. Neither increase or decrease, as the puzzles are a suitable
difficulty.

A mixture of hard constraints (constraints that must be val-
idated for a difficulty transition) and soft constraints (con-
straints that help determine finer aspects of the transition)
are integrated into the player model. These constraints are
based on the following measured metrics of the player and
puzzle state:

1. Time taken to reach solution

2. Number of attempts before solution

3. Number of backtracks (removing a portion of the puzzle
to try again)

4. Number of times the puzzle state was reset

5. Number of times the puzzle was almost solved (missing
less than 25% of special points)

Currently, the only metric with relation to hard constraints
is the Number of attempts before a solution, as we are set-
ting a hard limit on the number of attempts the player can
have before they are unable to increase the difficulty. This
hard constraint enforces minimum playability requirements,

ensuring the model does not increase the difficulty when a
large number of attempts have been made. The rest of the
metrics feed in to the soft constraint calculation, to inform
the overall player model output, allowing the model to adjust
difficulty smoothly.

Algorithm 3: Calculate Soft Constraint Score

Input: Player metrics: backtracks B, near-solves NN, resets
R, time taken T'
Output: Soft constraint score S,

1: B + B — 1 {Ignore initial start count}
2: Sg+0

3: if B < Binreshola then

4 Sy So+[10— Bl x Wg
5: else

6: S, S,—BxWpg

7: end if

8 if NV < Nthreshold then

9: Sy Ss+ 15— N|x Wy
10: else

11:  Sg+ Sg— N x Wy

12: end if

13: if R < Rireshold then

14: Sg« Sg+1|5—R| x Wg
15: else

16: Sg+ Ss—RxWg

17: end if

18: SSFSS_TXWT

19: return S,

The player model takes in the soft constraints score in tan-
dem with the validity of passing hard constraints, and sug-
gests a new difficulty of puzzle. Algorithm 3 shows how the
soft constraints are used to calculate a score.

Puzzle Evolution and Metrics

Figure 4 showcases 3 generated puzzles of increasing diffi-
culty, showcasing that the system is able to produce varying
puzzles configurations, across varying grid sizes. As the dif-
ficulty increases, we see transitions from linear, simple to
understand and “empty” solutions, to those with more com-
plex and sprawling paths, that often incorporate more of the
available grid space. Deeper thought is required in terms of
“harder” puzzles, as there are many avenues that will not
work, and often require more problem solving, critical think-
ing, and trial and error. Further, the genetic system is able to
generate puzzles with unique dimensions, and varying com-
plexity. Figure 5 showcases a puzzle with large amounts of
empty space between various points, allowing for multiple
solutions. On the other hand, Figure 6 showcases a com-
plex puzzle along a narrow grid, in which there exists less
opportunity for varying solutions. The various genetic algo-
rithm parameters are easily controlled to produce a variety of
unique puzzles with varying complexity. To provide a decent
tradeoff between runtime complexity and varying puzzles,
we have tested various parameters. Table 3 shows parame-
ters selected for the user study, selected to ensure puzzles



Figure 4: Difficulties 1 (top left), 5 (bottom) and 10 (top
right) puzzles.

Figure 5: Example of large grid puzzle.

are generated with reasonable runtimes while providing suf-
ficient variability.

Parameter Value
Population Size 300
Crossover Rate 80%

Generation Limit 10
Maximum Grid Size | 10x10

Table 3: Parameters Used for User Study.

Utilizing the above parameters, we are able to generate a
puzzle of any difficulty in approximately 7 seconds of run-
time, with more difficult and complex puzzles taking longer
than trivial ones. This allows for online puzzle generation,
while maintaining relatively low load times. As the popu-
lation size, generation limit and maximum grid size are in-
creased, extremely complex and large puzzles are able to be
generated, however, runtime is affected substantially.

Figure 6: Example of narrow puzzle.

User Study Results and Discussion
User Study

We have received ethics approval from the Research Ethics
Board at our institution to conduct a user study. Participa-
tion was completely voluntary. Participants were compen-
sated with a $20 Amazon gift card and recruited from a com-
puter science graduate student mailing list. The goal of this
exploratory study is to assess the functionality of the sys-
tem, and to determine if the combination of PCG and player
modeling provided an enriching problem solving environ-
ment. This exploratory study provides us initial analytical
data with regards to the “feeling” of the system, and the pre-
sentation of particular puzzles at particular times. This ex-
periment consisted of participants playing through ten puz-
zles in each of three different versions of the APSG.

1. Standard, in which our most complex player modeling
implementation was provided.

2. Increasing, a variation in which the puzzle always is in-
creasing by one difficulty level, regardless of player per-
formance.

3. Time-based, in which the only player modeling metric
fed into the modeling system was the time taken to solve
a particular puzzle (the first metric from the list before).

Each participant played through all three versions. The or-
der of the version presentation was switched between partic-
ipants, to ensure that the aggregate results were not skewed
based on users learning the puzzles and performing better on
later versions.

Following the gameplay session, users were asked to
provide feedback via a short questionnaire. Basic demo-
graphic such as age, gender and university major were
recorded. Detailed questions regarding the gameplay expe-
rience, problem-solving learning experience and usability
metrics were provided to the users. Finally, we recorded
various metrics regarding the individual dynamic difficulty
modes, as to determine the effectiveness of various metrics
in the player modeling system. All questions were provided
as Likert scales, either on a number system for determin-
ing player modeling metrics, or agree/disagree scales for the
subjective usability questions.
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Figure 7: Age and Self-Reported Gender Distribution.

The dynamic system reduced frustration with
puzzle solving
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Figure 8: Reduced frustration.

Results and Discussions

A total of 18 participants took part in the study, representing
arange of ages and self-reported genders (Figure 7). Overall,
responses to the APSG as a whole were positive. The vast
majority of participants found the experience to be intellec-
tually engaging, with 89 % either agreeing or strongly agree-
ing that the game was stimulating. Additionally, 94.5%
of participants reported that the game required the use of
problem-solving skills, reinforcing the notion that the game-
play commanded thoughtful engagement. A slightly smaller,
though still significant, proportion - 72.2%, felt the game
required critical thinking skills. Taken together, these re-
sponses suggest that the APSG successfully delivered a cog-
nitively demanding experience, aligning more with the goals
of serious games rather than purely entertainment-focused
gameplay.

To answer our research questions, we asked each partic-
ipant to rate the following statements on a scale of 1 to 10,
for each version of the game:

1. The generation system reduced frustration with puzzle
solving.

2. The generated puzzles were of the right difficulty.
There was a noticeable change in puzzle difficulty.

oW

. I felt a sense of progression (earlier puzzles were easier
than later puzzles).

The generated puzzles were the right difficulty.
10

Too Hard
o]

1 = Too Easy, 10

STANDARD INCREASING TIME

Figure 9: Suitable Difficulty.

There was a noticeable change in puzzle difficulty.
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Figure 10: Noticeable Change in Puzzle Difficulty.

Frustration (RQ1) We use the result of Statement 1 to
answer RQ1. Across all three versions of the system, par-
ticipant responses revealed a consistent moderate reduction
of frustration while solving puzzles (see Figure 8). Average
scores tended towards the higher end of the scale, indicating
lower frustration, with the Increasing and Time-based ver-
sions performing slightly better than the Standard (Standard
= 6.47, Increasing = 6.94, Time-based = 6.83). However,
there were no statistically significant differences between
group means as determined by one-way ANOVA: F(2, 51)
= 0.072, p = 0.93. These results suggest that all three ap-
proaches had a similar positive impact on player experience
by maintaining a manageable challenge level, and players
did not feel that the adaptive difficulty system had an impact.
However, the absence of a static baseline comparison limits
our ability to quantify the system’s impact. Future studies
could include a static version of the game as a baseline to
measure frustration levels more strictly.

Difficulty and Progression (RQ2) To answer RQ2, we
examine the results from Statements 2 to 4. When examin-
ing perceived or suitable difficulty, participants were asked
to rate the puzzles on a scale where one extreme represented
puzzles that were too easy, and the other extreme represented
puzzles that were too difficulty (see Figure 9). We hypoth-
esized that the optimal difficulty would fall just above the
midpoint of the scale, signaling that players found the puz-
zles to be challenging, but not overwhelming. This hypothe-
sis was generally supported by the results, with the Standard
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Figure 11: Progression of the Game.

and Increasing versions hovering near the expected sweet
spot (Standard = 6.06, Increasing = 5.67), seemingly indi-
cating that these models struck a decent balance in chal-
lenge. Conversely, the Time-based model received a notice-
ably lower score (Time-based = 4.44), suggesting that the
puzzles may have skewed towards being too easy. ANOVA
shows a difference between the means: F(2, 51) =3.447,p =
0.039. A post-hoc t-test with Bonferroni correction between
Standard and Time-based models shows significant differ-
ences and large effect size (p = 0.004, Cohen’s d = 0.869),
while there are no significant differences between Standard
and Increasing models (p = 0.075, Cohen’s d = 0.330).

To assess whether the difficulty changed in a noticeable
or meaningful way across the course of the session, we an-
alyzed participant responses to the statement targeting per-
ceived variation in puzzle difficulty (see Figure 10). Ideally,
a well-designed adaptive system should present a clear track
of increasing challenge. The results indicated that the Stan-
dard model most effectively conveyed this change (Standard
= 8.17), followed closely by the Increasing model (Increas-
ing = 7.56). The Time-based model again trailed behind
(Time-based = 6.89). However, ANOVA shows no statisti-
cal significance: F(2, 51) = 1.979, p = 0.149.

Finally, participants were asked whether they felt a sense
of progression throughout the sequence of puzzles - a key
factor in our hypothesis of player engagement (see Fig-
ure 11). Responses situated closely with our expectations:
the Standard model once again led in perceived progression
(Standard = 8.56), with the Increasing model following be-
hind (Increasing = 7.5). The Time-based version scored the
lowest (Time-based = 6.0), reinforcing patterns seen in pre-
vious measures. ANOVA shows a difference between the
means: F(2, 51) = 5.758, p = 0.005. A post-hoc t-test with
Bonferroni correction between Standard and Time-based
models shows significant differences and large effect size (p
< 0.001, Cohen’s d = 1.083). While there are no significant
differences between Standard and Increasing models (p =
0.074), there is a moderate effect size (Cohen’s d = 0.567).
These findings suggest that while all systems incorporated
some degree of progression, the Standard and Increasing
models provided a more coherent sense of advancement.

Gameplay Data In addition to subjective, questionnaire
based feedback, analytical gameplay data was collected in
the form of detailed user logs for each participant across ver-
sions. These logs recorded the specific puzzles completed,
the time taken to solve each one, their difficulty, and key
player modeling metrics used during adaptive generation. To
further assess the effectiveness of each version, we analyzed
two core metrics: the average puzzle difficulty presented
to players, and their average deviation in completion time,
relative to a unified benchmark. This benchmark was ob-
tained by averaging the completion times across all puzzles
in the study, creating a reference point where each version’s
performance could be compared. For each version, we then
calculated the average time offset, which is either above or
below this benchmark, offering insight into how long par-
ticipants took to complete puzzles relative to the overall
average. Figure 12 visualizes these comparisons, showcas-
ing both average puzzle difficulty and average time devia-
tion per version. Here, positive values indicate participants
took longer than the benchmark, while negative values re-
flect faster completions, again relative to the benchmark.

The results indicate several potential takeaways. Both the
Standard and Increasing models generated puzzles with sim-
ilar average difficulty levels (Standard = 5.53, Increasing =
5.50). However, participants completed puzzles in the Stan-
dard version much faster, with an average time deviation
of +6.63 seconds, compared to +12.34 seconds in the In-
creasing model. This suggests that although both systems
presented similarly difficult puzzles, the Standard version
enabled players to solve them more efficiently, potential
reflecting more suitable pacing, or better alignment with
player ability over time. The Time-based version conversely
showed a significantly different pattern. While its average
time deviation was much lower, at -25.67 seconds, this ap-
parent speed came at the cost of overall puzzle challenge: the
average puzzle difficulty for this version was notably lower
(Time-based = 3.87). In other words, this indicates that play-
ers in the Time-based model were solving puzzles much
faster than the benchmark - but likely due to the system
failing to escalate challenges effectively. As a result, par-
ticipants rarely encountered higher-difficulty puzzles, that
might have required longer engagement.

Time as a Metric (RQ3) When considering the sub-
jective, questionnaire-based measures in tandem with our
methodological log-based analysis, a pattern seemingly be-
gins to emerge. Across multiple criteria - noticeable change
in puzzle difficulty (Figure 10), perceived difficulty suitabil-
ity (Figure 9), and sense of overall progression (Figure 11),
the Standard model consistently received the highest ratings.
The Increasing model showed promise, but was slightly less
effective in creating a smooth and timely experience, evident
in the longer completion times. Meanwhile, the Time-based
model consistently underperformed across both subjective
and analytical dimensions, suggesting that time alone as a
metric may not be well-suited for adaptive puzzle genera-
tion, particularly in its current form.

Taken together, these initial findings suggest that the Stan-
dard player model, which incorporates complex and more
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Figure 12: Average Puzzle Difficulty and Average Deviation in Completion Time Per Puzzle compared to the benchmark.

nuanced tracking of user performance and engagement, po-
tentially offers the most balanced and effective foundation
for adaptive difficulty adjustments. However, we note that
the Standard and Increasing models do not have statisti-
cal significant differences across various measures, indicat-
ing that further studies must be conducted. These insights
suggest further development and refinement of the Standard
model as a potential core approach for adaptive puzzle gen-
erations in future iterations of the APSG.

Conclusions and Future Work

This paper proposes a novel use of a genetic algorithm in
tandem with an adaptive player modeling system to train stu-
dents with problem solving. The presented APSG is capable
of creating a wide variety of different puzzles, with varying
difficulties and complexities. Further, it is able to dynami-
cally adapt the difficulty of presented puzzles to adapt to the
current user, and can present the player with a progression
of simple puzzles to complex ones. Additionally, the pilot
user study results suggest positive notions to the APSG as
a whole, with the insight that having only time as a metric
produces notably worse outcomes overall.

Through this research, we present a customized design of
a genetic algorithm in an APSG in which puzzles of varying
difficulties can be generated. The integration of user data
with Al-driven technologies aims to foster strong engage-
ment by allowing users to be fully immersed while remain-
ing in control.

Limitations

While our results show promising indications of the impact
of the model, further work is necessary. First, our results are
limited by the relatively small number of participants. The
only metric that we have singled out is time-on-task, based
on its usage in prior literature. The selection for the time-
on-task threshold was chosen at a group level despite an un-
known participant population. A full ablation study could
examine other metrics in the player model and their effec-
tiveness, with future work exploring the individual impacts
of each metric rather comparing versions. Additionally, var-
ious validity concerns should be considered. Internal, exter-
nal, and construct validity may be influenced by nuanced as-

pects such as player skill, design-driven parameter choices,
self-reporting metrics, and the limited scope of puzzle types
and participant population. Future work should consider and
refine measurement approaches and the affects of underlying
variables, while also considering the system’s generalizabil-
1ty.

The player modeling system could also benefit from more
advanced metrics, and the calculation thereof, particularly
those concerning emotional states. If such a system could
record the emotional states of users, through integrated re-
ality technologies, for instance, eye-tracking, it could then
be analyzed in such a way to provide an emotional met-
ric with regards to difficulty, rather than what can be mea-
sured strictly from playing through the puzzles. Further,
the player modeling system might benefit from various Al-
techniques, instead of the simplistic approach we used, per-
haps reinforcement-learning or machine-learning based ap-
proaches. This would allow for a more exact model of the
player, and as such, could suggest more suitable difficulties.

Our systematic approach to adaptive puzzle generation
has broader impact beyond the current work. It could be im-
plemented across more complex and non-linear puzzles. For
instance, puzzles that deal with topics other than pathfind-
ing such as mathematical or logic-based puzzles present a
unique opportunity for expanding this system. Additionally,
such a system has yet to be used in a non-game environment.
For example, a similar system that instead optimizes practice
problems for grade-school or similar curricula, particularly
in the math or programming domains might warrant further
exploration. Finally, the development of a similar system
targeted towards diverse audiences would be beneficial to
encompass all learners. Particularly, a well-designed system
could be aimed towards those with learning disabilities, aim-
ing to adapt to their specific and exacting educational needs.
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