From Unstable to Playable: Stabilizing Angry Birds Levels via Object
Segmentation

Mahdi Farrokhimaleki, Parsa Rahmati, Richard Zhao

Department of Computer Science, University of Calgary
Calgary, Alberta, Canada, T2N 1N4
mahdi.farrokhimaleki @ucalgary.ca, parsa.rahmaty @ucalgary.ca, richard.zhaol @ucalgary.ca

Abstract

Procedural Content Generation (PCG) techniques enable au-
tomatic creation of diverse and complex environments. While
PCG facilitates more efficient content creation, ensuring con-
sistently high-quality, industry-standard content remains a
significant challenge. In this research, we propose a method to
identify and repair unstable levels generated by existing PCG
models. We use Angry Birds as a case study, demonstrating
our method on game levels produced by established PCG ap-
proaches. Our method leverages object segmentation and vi-
sual analysis of level images to detect structural gaps and per-
form targeted repairs. We evaluate multiple object segmen-
tation models and select the most effective one as the basis
for our repair pipeline. Experimental results show that our
method improves the stability and playability of Al-generated
levels. Although our evaluation is specific to Angry Birds, our
image-based approach is designed to be applicable to a wide
range of 2D games with similar level structures.

Introduction

Procedural Content Generation (PCG) is the algorithmic cre-
ation of game content, such as levels, maps, and characters,
with limited or indirect user input. PCG has become an es-
sential tool in game development, enabling the automatic
creation of diverse and complex environments (Summerville
et al. 2018; Farrokhi Maleki and Zhao 2024). While PCG
methods can generate vast amounts of content efficiently,
ensuring playability and structural stability remains a critical
challenge, particularly in physics-based games such as An-
gry Birds. In these games, levels consist of interconnected
structures, where even minor instability can lead to unin-
tended collapses, affecting the playability of levels.
Previous research in level generation has explored vari-
ous approaches, including search-based methods, machine
learning models, and user-adaptive techniques (Nygren et al.
2011). While traditional PCG methods primarily focus on
generating levels from predefined rules, Generative adver-
sarial networks (GANs) have recently emerged as a power-
ful alternative for learning structural patterns from human-
designed levels (Abraham and Stephenson 2023). How-
ever, GAN-generated levels often lack explicit stability con-

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

straints, leading to floating blocks, misaligned structures, or
physically unplayable configurations.

After reviewing the generated levels from Abraham and
Stephenson (2023)’s work, we observed that some unstable
levels contain noticeable gaps that could be corrected us-
ing a model trained for gap detection. To address this, we
propose a level repair pipeline that integrates object seg-
mentation with automated level correction. Our method uti-
lizes YOLOV8-Seg, a real-time object segmentation model,
to identify gaps and unstable structures in procedurally-
generated Angry Birds levels.

We define a stable level as one that does not exhibit un-
intended motion or block destruction when loaded into the
game engine. Once gaps are identified, our method repairs
them by inserting appropriate structural elements, thereby
improving both the stability and playability of procedurally
generated content.

For our study, we select GAN-generated Angry Birds lev-
els and apply our repair method. Our approach introduces a
novel segmentation-driven correction process that promotes
structural coherence and reduces reliance on manual inter-
vention. We evaluate the repaired levels using the stability
metrics introduced in prior work, comparing the playability
of original versus repaired levels through quantitative stabil-
ity assessments.

This paper presents the following key research contribu-
tions:

1. A segmentation-based repair pipeline for correcting un-
stable procedurally-generated Angry Birds levels.

2. A real-time object segmentation model using YOLOVS,
trained to identify gaps in Angry Birds structures.

3. A comparative evaluation of level stability, demonstrat-
ing improvements in playability after repairs.

The findings demonstrate that, despite achieving success
in fixing only a portion of unplayable levels, segmentation-
based level repair appreciably increases the aggregate count
of playable levels when deployed within a large-scale
generate-and-test pipeline.

Background and Related Works
Level Repairing

PCG is widely used in game development to create dynamic
and diverse content, but ensuring high-quality, playable lev-

els remains a challenge. Automated level repairing tech-
niques have been introduced to detect and fix unstable or
unplayable elements in Al-generated levels. This process in-
volves identifying structural flaws, applying fixes, and re-
evaluating stability to ensure functional and engaging game-
play.

Several approaches have been proposed for repairing pro-
cedurally generated levels, focusing on different aspects
of stability, fairness, and playability. Rule-based correc-
tion with predefined rules has been used to remove float-
ing blocks, prevent gaps, and ensure reachable objectives
(Graves 2016). Machine learning-based methods, such as
neural networks, learn the probability distribution of tiles
based on their surroundings (Shu et al. 2020).

Despite these methods, unlike tile-based platformers
where level geometry is discrete and predictable, level re-
pairing in physics-based games remains particularly chal-
lenging due to the complex interactions between game ob-
jects. Angry Birds, being a physics-based game, introduces
additional complexity in level repair. Structures in the game
are composed of blocks with different materials (wood, ice,
stone), and their interactions determine stability and destruc-
tibility. GAN-generated levels for Angry Birds, while effec-
tive in creating new structures, often suffer from instability
problems, resulting in a low count of stable levels compared
to unstable ones (Abraham and Stephenson 2023).

Our study aims to address this problem using a machine-
learning-based approach, integrating YOLO-based object
segmentation to identify gaps in unstable Angry Birds levels
and applying automated repairs to enhance their stability and
playability. By focusing on stabilizing unstable levels rather
than generating stable levels from scratch, we aim to address
one of the key barriers that limits the adoption of academic
content generators. While many works suggest potential in-
dustry relevance, few are used in practice due to quality con-
cerns. Improving stability through repair helps narrow this
gap by enhancing the usability of such generators not only
for potential industry use, but also in educational contexts
and co-creative systems, where reliability and playability are
equally important.

Angry Birds Level Generation

Angry Birds is a 2D physics-based game where players
launch birds at block-based structures to eliminate pigs. The
game mechanics rely on destructible environments, where
structures are usually composed of wood, ice, or stone
blocks, each having different resistance and attributes. Play-
ers must strategically aim their limited number of birds to
cause structural collapse and maximize damage to eliminate
all pigs. Because the original Angry Birds game is not open
source, most academic research and Al-driven level genera-
tion studies utilize a Unity-based clone called Science Birds
(Ferreira and Toledo 2014). Science Birds replicates the me-
chanics of the original game while allowing researchers to
generate, modify, and analyze levels programmatically. Each
level in Science Birds is stored in an XML format, describ-
ing the position, type, and orientation of every game object.

Table 1 presents the standard block types used in Angry
Birds levels, categorized by shape and material. While the

game also includes irregular block types, such as triangu-
lar and circular blocks, these are typically excluded from
automated level generation due to complex stability con-
straints. Most PCG-based approaches for Angry Birds gen-
erate structures using only rectangular blocks with limited
block orientations (0° or 90° angles) to minimize instability.

ID Shape Name Dimensions
1 @ SquareHole (0.85, 0.85)
2 —— RectBig (2.06, 0.22)
3 Ee—u= RectMedium (1.68, 0.22)
4 — RectSmall (0.85,0.2)
5 - RectFat (0.85, 0.43)
6 = RectTiny (0.42,0.22)
7 ® SquareTiny (0.22,0.22)
8 @ SquareSmall (0.43, 0.43)

Table 1: Block types that are available in Science Birds.

Existing Approaches Over the past decade, researchers
have explored multiple approaches for automated level gen-
eration in Angry Birds. Many of these methods have been
showcased in the AlIBirds Level Generation Competition
(Stephenson et al. 2018). The most common techniques in-
clude: genetic algorithms (GA) that use evolutionary princi-
ples to iteratively improve level design (Ferreira and Toledo
2014), search-based approaches that generate levels by opti-
mizing specific structural constraints (Stephenson and Renz
2017, 2016), Monte Carlo Tree Search (MCTS) that simu-
lates multiple playthroughs to identify optimal level config-
urations (Graves 2016), and variational autoencoders (VAE)
that use deep learning to generate levels from latent repre-
sentations (Tanabe et al. 2021). Some studies have focused
on specific objectives, such as: generating levels that resem-
ble text, quotes, or formulas (Jiang, Harada, and Thawon-
mas 2017), creating deceptive structures that mislead players
(Gamage et al. 2021), and designing Rube Goldberg-style
contraptions for dynamic interactions (Abdullah et al. 2019).

Despite these advancements, ensuring stability remains a
challenge, as Al-generated levels can often contain floating
blocks, structurally unsound elements, or unintended diffi-
culty spikes. This limitation highlights the need for post-
processing techniques (such as the repair approach proposed
in our study) to refine Al-generated levels and improve their
playability. Additionally, while some level generation ap-
proaches, such as the Rube Goldberg generator and the De-
ceptive Generator, report very high stability rates, these sys-
tems rely heavily on constrained templates and looser defini-
tions of stability. Such methods produce simpler, more pre-
dictable structures where instability is far less likely to oc-
cur. In contrast, GAN-generated levels are more diverse and

complex, which naturally leads to a higher rate of unstable
structures. Our focus on GAN outputs was intentional: they
represent a more challenging but also more promising direc-
tion for producing varied and creative levels. Importantly, in-
stability is not unique to GAN-based methods. any approach
that generates more intricate structures without strict con-
straints is prone to similar issues.

Object Segmentation

Object segmentation is a computer vision technique that in-
volves identifying and delineating objects within an image
at the pixel level (Long, Shelhamer, and Darrell 2015). Un-
like object detection, which provides bounding boxes around
objects, segmentation classifies each pixel, enabling precise
localization of structural components.

Deep learning-based segmentation models, particularly
convolutional neural networks (CNNs), have demonstrated
state-of-the-art performance in this field. Among them,
YOLO (You Only Look Once) has emerged as one of the
most efficient architectures for real-time segmentation and
detection (Long, Shelhamer, and Darrell 2015). YOLO, de-
veloped by Joseph Redmon et al. (2016), was the first real-
time, end-to-end object detection approach. The name “You
Only Look Once” highlights its ability to perform object
detection in a single network pass, unlike earlier methods
that required multiple evaluations per image. Previous tech-
niques, such as sliding window-based approaches, involved
applying a classifier hundreds or thousands of times across
an image, making them computationally expensive. More
advanced models, like two-stage detectors, first generated
region proposals before running a classifier on each pro-
posal. YOLO, in contrast, streamlined the detection pro-
cess by using a regression-based approach to directly pre-
dict object locations and class probabilities in one step, un-
like Fast R-CNN (Ren et al. 2016), which relied on separate
outputs for classification and bounding box regression. This
design made YOLO significantly faster and more efficient
than prior detection frameworks (Terven, Cérdova-Esparza,
and Romero-Gonzalez 2023).

Among different versions of YOLO, YOLOVS offers sig-
nificant improvements in segmentation accuracy, computa-
tional efficiency, and model robustness (Huang et al. 2023).
The advancements convinced us to use this model in our re-
search for our gap detection, where structures contain varied
shapes, materials, and complex spatial arrangements.

We chose segmentation because it allows classification at
the pixel level and enables detection of structures even when
blocks overlap or are partially occluded. This capability was
crucial for identifying meaningful gaps. A similar strategy
was used in for Mario level repair (Shu et al. 2020), demon-
strating its relevance to games.

Methodology

This section outlines our pipeline for the automated repair
of Al generated levels, using levels from Angry Birds gen-
erated using the Angry Birds GAN model (Abraham and
Stephenson 2023). The pipeline begins by analyzing an im-
age of a generated level to assess its structural stability. Un-

stable levels are then automatically passed to our trained re-
pairer model for correction.

Model Architecture

For the gap detection task, we selected three distinct, state-
of-the-art model architectures for comparison: U-Net, Seg-
Former, and YOLOv8m-Seg, the medium variant of the
YOLOvV8 segmentation model. This selection was made
to evaluate a representative cross-section of modern seg-
mentation paradigms. U-Net was chosen as a highly ef-
fective and well-established benchmark for convolutional-
based segmentation. SegFormer represents the more re-
cent transformer-based approach, which has achieved strong
performance in various computer vision tasks. Finally,
YOLOv8m-Seg was included for its foundation in real-time
object detection, offering a lightweight and computationally
efficient alternative. By comparing these three, we aimed to
identify the most suitable architecture balancing accuracy
and performance for our level repair pipeline.

SegFormer is a transformer-based architecture introduced
by Xie et al. (2021). It combines the advantages of hierar-
chical transformers and lightweight multilayer perceptrons
(MLPs) for efficient and accurate semantic segmentation.
Unlike traditional convolutional models, SegFormer does
not rely on positional encoding and uses a Mix-FFN and
overlapping patch merging to capture both local and global
context effectively.

U-Net, proposed by Ronneberger et al. (2015), is a widely
used convolutional network in medical and binary segmenta-
tion tasks. It consists of a symmetric encoder-decoder struc-
ture with skip connections that help preserve spatial infor-
mation lost during downsampling. The encoder extracts fea-
tures at multiple scales, while the decoder gradually recon-
structs the segmentation mask, incorporating features from
corresponding encoder levels.

YOLOV8-Seg is a recent advancement in the YOLO se-
ries developed by Ultralytics (2023). YOLOv8-Seg extends
real-time object detection capabilities to segmentation by
combining bounding box detection with precise mask pre-
diction. It employs a lightweight and fast architecture that is
suitable for deployment scenarios where inference speed is
crucial. We used the YOLOv8m-Seg model with its default
configuration and fine-tuned it for our binary segmentation
task.

Each model was trained and evaluated on the same dataset
and under similar conditions to ensure a fair comparison in
terms of performance metrics and computational efficiency.
Following the comparative analysis detailed in the Results
section, YOLOv8m-Seg was selected as the definitive model
for our repair pipeline. It provided the best combination of
high segmentation accuracy and computational efficiency,
making it the most practical choice for integration into our
automated repair system.

Dataset

For training, Abraham and Stephenson used the open-source
level generator Iratus Aves (Stephenson and Renz 2017) to
produce a dataset of 4,931 XML level descriptions, each rep-

resenting a unique structure, including pigs and a variety of
blocks. We used the same dataset as our training data.

Given our focus on teaching the model to identify gaps
that destabilize structures, we filtered these levels to select
only those that were stable. This was essential because our
goal was to train a model on de-stabilized versions of other-
wise stable levels, enabling supervised learning with known
ground-truth gaps that could be filled to restore stability.

We evaluated level stability using three different metrics
derived from physical simulation. To ensure higher quality
and consistency in training, we selected the most stringent
stability metric, as it yielded the most robust set of stable
levels. This filtered set became our stable dataset, and we
reduced the level count to 1887 XML levels.

To generate training samples with structural gaps, we ar-
tificially introduced instability by removing one to four ran-
dom blocks from the XML file of each selected level. We
then simulated these modified levels, keeping only those
where the original level was stable but the modified version
became unstable after block removal. This filtering process
resulted in 1,547 levels, which constituted our final dataset
for training purposes.

For model training, each level’s XML file was processed
using the established encoding pipeline. The level was con-
verted into a multi-layer grid representation, which was then
flattened into a single 2D image. To focus the model on
structure rather than material composition, this image was
converted into a binary format (where 1 represents any ob-
ject and O represents empty space). This binary image of the
unstable structure served as the input for our model, while
the pixel-perfect location of the removed block(s) served as
the target segmentation mask.

This procedure ensured that each training sample corre-
sponded to specific and known destabilizing gaps, aligning
with our goal of using supervised learning to detect and sug-
gest gap-filling interventions. For our experiments, we uti-
lized the dataset of 8,000 XML Angry Birds levels as pre-
sented and analyzed in the work of Abraham and Stephen-
son. This dataset was selected for two primary reasons. First,
the authors noted significant instability issues within their
generated levels, which provided an ideal test case for our re-
pair pipeline. Second, using their established dataset allows
for a more direct comparison of the improvements offered
by our method. We acknowledge that these datasets design
may not capture all possible structural failure modes. These
limitations are discussed further in the Limitations section.

Training Details

Training Environment Model training was performed
on a Google Colab instance, which provided access to a
NVIDIA T4 GPU and 16 GB of RAM. This cloud-based
environment was used for its powerful computational capa-
bilities, suitable for training deep learning models.

Training Hyper-parameters and Configuration The
evaluation, which necessitated the execution of the Sci-
ence Birds simulator, was performed on a local Windows-
based machine with the following specifications: CPU: In-
tel Core™ 15-10400F, GPU: NVIDIA GeForce 1660 Super,

RAM: 16 GB.

Across all models, a consistent set of training parameters
was used to ensure fair comparison. The dataset was par-
titioned into training (80%) and validation (20%) sets. The
models were trained for a maximum of 100 epochs with a
batch size of 8 using the AdamW optimizer, a variant of the
Adam optimizer that enhances weight decay regularization.
Input images were resized to 128x128 pixels. An early stop-
ping strategy was employed with a patience of 10, halting
training if no improvement was observed after 10 consec-
utive epochs to mitigate overfitting. Finally, model weights
were saved periodically every 5 epochs. Upon completion of
training, the models were compared based on their segmen-
tation performance on the validation dataset. To measure the
precise quality of the generated masks against the ground
truth, we calculated several pixel-level metrics such as Pre-
cision, Recall, and F1-Score for each model.

Repair Process

Our automated repair pipeline leverages the trained model
to correct instabilities in Al-generated levels. This process
involves a three-stage evaluation, repair, and re-evaluation
workflow. Figure 1 illustrates our complete workflow.

The repair process starts by simulating each generated
level within the game engine. During this simulation, the
level’s stability is evaluated against one of three predefined
metrics: Block Velocity, Block Destruction, or Block Dam-
age. If a level is identified as unstable according to these
criteria, the repair stage is initiated. Here, a binary-encoded
image of the level, which distinguishes structure from back-
ground, is provided as input to our trained model. The model
produces a segmentation mask identifying the precise loca-
tions of structural gaps. These repairs are applied directly to
a 2D image representation of the level by filling the pixel
positions of the predicted gaps, which are then converted by
the decoder into the most closely matching blocks..

For all repairs, wood is selected as the default material.
This choice is based on its balanced physical properties
compared to ice and stone. Our preliminary experiments re-
veal that material choice had a negligible effect on stability
outcomes; the primary factors are the placement of blocks
and their resulting physical interactions. Wood provides ad-
equate structural integrity without the excessive weight of
stone, which could introduce new instabilities, or the low
friction and durability of ice.

In the final stage, the repaired level representation is de-
coded back into the standard XML format. This new level
is then subjected to a final re-evaluation inside the game us-
ing the same metric that initially flagged it as unstable. This
step serves to quantitatively verify whether the repair was
successful and if the level has been stabilized.

Evaluation and Results

This section presents a two-part empirical evaluation of our
proposed level repair pipeline. First, we conduct a compara-
tive analysis of the three selected segmentation models, Seg-
Former, U-Net, and YOLOv8m-Seg, to identify the most ef-
fective architecture for the gap-detection task. Second, us-
ing the best-performing model, we evaluate the efficacy of

Output: Playable Level

Yes— (Stable)

Input: AI-Generated Level
P ML) —| 1.simulate Level in Game l—}

2. Assess Stability Metrics l—-}

Is Level Stable?

3. Repair Sub-Process (See

N
o—> Next Graph) —|

Output: Successfully
Repaired Level

Yes—p

4. Re-simulate Repaired

5. Re-assess with Same

il ?
Level —> Metric —> Is Repaired Level Stable?
No——| Output: Failed Repair
(a) Repair Pipeline
3. REPAIR SUB-PROCESS
VESL» 3.4. Fill Gaps with 3.5. Decode to New
Wood XML
3.1. Encode XML to 3.2. Feed Image to 3.3. Model Predicts
e — R Gap(s) Found?
Image Repair Model Gaps (Mask)
Output: Failed
NO » h
Repair

(b) Repair Sub-Process

Figure 1: The automated level repair pipeline. The top diagram (a) illustrates the high-level workflow, where an Al-generated
level is first simulated and evaluated for stability. If the level is deemed unstable, it enters the repair stage. After the repair is
applied, the level is re-evaluated to confirm its stability. The bottom diagram (b) provides a detailed breakdown of the “Repair
Sub-Process” block, showing the five steps from encoding the level into an image, using the model to predict gaps, filling the
gaps with wood, and decoding the result back into a new XML file.

the complete repair process when applied to the dataset of
unstable levels generated by the GAN from Abraham and
Stephenson (2023).

The primary evaluation of our work measures the efficacy
of the final repair model on the dataset of Al-generated lev-
els. The success of the repair pipeline is quantified by the
number of previously unstable levels that are rendered sta-
ble, as measured by our stability metrics explained in the
next section.

To further understand the model’s impact, we also analyze
the cases where the repair was not successful. For the levels
that remained unstable, we calculate the average block dam-
age and the average number of destroyed blocks. These fig-
ures are compared against the baseline averages of the orig-
inal, unrepaired unstable levels from the methods of Abra-
ham and Stephenson, allowing us to assess if our model had
a partially mitigating effect even in failed cases.

Evaluation Metrics

To conduct a thorough evaluation, we employ two distinct
categories of metrics: one to assess the pixel-level accu-

racy of the segmentation models and another to measure the
physical stability of the game levels after repair.

Model Performance Metrics To compare the perfor-
mance of the segmentation architectures, we use standard
metrics that evaluate the quality of the predicted segmenta-
tion masks against the ground-truth data.

Precision, Recall, and F1-Score on pixel-level metrics as-
sess the accuracy of the segmentation. Precision measures
the proportion of correctly predicted gap pixels among all
pixels predicted as a gap. Recall measures the proportion of
correctly predicted gap pixels among all actual gap pixels.
The F1-Score is the harmonic mean of Precision and Recall.

After selecting YOLOv8m-Seg as our final model, we uti-
lize additional metrics, common in object detection, for a
more precise evaluation of its ability to locate the exact po-
sition and shape of a gap. Intersection over Union (IoU), also
known as the Jaccard index, measures the overlap between
the predicted segmentation mask and the ground-truth mask,
and it is calculated as the area of their intersection divided by
the area of their union. For segmentation tasks, mean Aver-
age Precision (mAP) provides a comprehensive measure of

F1 Score

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Epoch

(a) F1 Score over Epochs

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Epoch

(c) Recall over Epochs

Precision

0 5 10 15 20 26 30 35 40 45 50 55 60 65 70 75 80
Epoch

(b) Precision over Epochs

Loss
8

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Epoch

(d) Loss over Epochs

Figure 2: Training Progress of YOLOv8m (blue), SegFormer (orange), and UNet (green) models over epochs.

a model’s accuracy across various IoU thresholds. mAP50
calculates the average precision at a fixed IoU threshold of
0.50, while mAP50-95 calculates the average precision over
a range of IoU thresholds from 0.50 to 0.95 in steps of 0.05,
offering a more accurate evaluation of the mask prediction
quality.

Level Stability Metrics To quantify the success of the
repair process, we assess the stability of levels within the
game engine. We adopt the two metrics from Abraham and
Stephenson’s work and introduce a third to capture more nu-
anced outcomes.

The “Block Velocity” measure determines that a structure
is stable if all blocks are stationary when the level is loaded.
The “Block Destruction” measure determines that a struc-
ture is stable if no blocks are destroyed after the level is
loaded. Blocks in Angry Birds will typically be destroyed if
they fall from a sufficient height or collide with other blocks,
meaning that this measure of stability is a good test for if a
structure has collapsed (Abraham and Stephenson 2023).

After reviewing these metrics, we notice cases in which
blocks sustain damage but are not destroyed. Consequently,
under the “Block Destruction” metric, the level is consid-
ered stable, while under the “Block Velocity” metric, it is
flagged as unstable. In some instances, blocks have minor
movements and are displaced, but the overall shape remains
intact. Some of these levels exhibit minimal movement af-
ter loading and then stabilize after sustaining minor dam-
age. However, others sustain significant damage, and despite
blocks not being destroyed, the shape of the level can change

drastically.

To address these scenarios, we introduce a third metric:
“Block Damage.” “Block Damage” determines that a struc-
ture is stable if the total damage sustained by all blocks is
less than or equal to zero (the default damage value in the
work by Abraham et al. starts at -1). This damage is quan-
tified by the physics engine. Note that the “Block Destruc-
tion” and “Block Damage” measures are weaker versions
of the “Block Velocity” measure (i.e., any structure classi-
fied as stable by “Block Velocity” is, in the vast majority of
cases, also classified as stable by the other two measures).

These three stability metrics provide a multi-faceted view
of a level’s playability, enabling a more granular analysis of
our repair pipeline’s effectiveness.

Comparing Model Architectures

To select the optimal backbone for our repair pipeline,
we conduct a comparative evaluation of three promi-
nent segmentation architectures: U-Net, SegFormer, and
YOLOv8m-Seg. Each model is trained on identical data
splits for up to 100 epochs, utilizing an early stopping mech-
anism to halt training once performance plateaued. The per-
formance of each model is evaluated using precision, recall,
F1-Score, and validation loss.

Our results identify YOLOv8m-Seg as the best perform-
ing model. It consistently achieve the highest F1-Score
(0.824) and the lowest validation loss (1.596), demonstrat-
ing a superior balance of accuracy and training stability. Seg-
Former also shows strong performance, reaching a peak F1-

LI

(b) Predicted Gaps by
YOLOv8m-Seg

(a) Original Unstable
Structure

Figure 3: A visual demonstration of the YOLOv8m-Seg
model’s gap detection capability. (a) The binary image of
an unstable level is given as input. (b) The model outputs
a segmentation mask (shown as red overlays) that identifies
the location and shape of structural gaps.

Score of 0.796 with smooth convergence. In contrast, while
U-Net obtains the highest recall (0.847), its lower precision
results in a less competitive overall F1-Score. The learning
progress for each model is visualized in Figure 2, and a de-
tailed breakdown of peak performance metrics is provided
in Table 2.

Model Epoch | Precision | Recall | F1 Score | Loss
YOLOvV8m 33 0.837 0.811 0.824 1.596
SegFormer 65 0.798 0.795 0.796 1.932
UNet 54 0.690 0.847 0.760 1.721

Table 2: Performance comparison of three segmentation
models at their best epochs, evaluated using precision, re-
call, F1 score, and training segmentation loss.

While SegFormer and UNet remain viable alternatives for
applications prioritizing pixel-level fidelity or architectural
modularity, we select YOLOv8m-Seg as the backbone for
our repair pipeline due to its higher segmentation accuracy
and lower loss. To quantify this, we also measure the object
detection metrics previously defined, finding that the model
achieved a good mAP50 of 0.862 and a mAP50-95 of 0.409.
This proven ability to not only segment but also accurately
locate gaps, as visually demonstrated in Figure 3, confirms
it as the most suitable architecture for our task.

Efficacy of the Repair Pipeline

After selecting YOLOv8m-Seg as the optimal backbone, we
evaluate the efficacy of the complete repair pipeline. This
evaluation was designed to answer two primary questions:

1) How effectively does our method increase the number
of stable, playable levels?

2) What are the characteristics and impact of unsuccessful
repairs?

To this end, we apply our repair process to the full set
of levels generated using the methods of Abraham and
Stephenson, which are not part of the training or validation
sets.

Quantitative Repair Success To provide a comprehen-
sive view of our pipeline’s effectiveness, we evaluate the

repair outcomes against each of our three stability metrics,
which vary in strictness. This multi-faceted analysis demon-
strates how the definition of “stability” impacts the per-
ceived success rate. For this analysis, we calculate two key
metrics to quantify the performance of our method.

1. Repair Rate: This metric measures the direct effective-
ness of our pipeline on the pool of unstable levels. It is
defined as the proportion of initially unstable levels that
were successfully stabilized by our repair process.

Number of Levels
Successfully Repaired
Total Number of
Initially Unstable Levels

Repair Rate =

2. Stability Growth Factor: This metric measures the multi-
plicative increase in the total yield of usable levels. It is
calculated by dividing the final count of stable levels by
the initial count, showing how many times larger the set
of stable levels became after our repairs.

Total Stable Levels
After Repair

Total Stable Levels
Before Repair

Stability Growth Factor =

Together, these metrics provide a complete picture of our
method’s performance, showing both its efficiency in fixing
broken content and its overall impact on the total number of
playable levels. Our results are summarized in Table 3.

First, we evaluate the results using our most stringent met-
ric, “Block Velocity.” We began with 7,055 levels that were
flagged as unstable by this metric. After applying our au-
tomated repair process, we re-evaluate this same set of lev-
els. Our results show that the pipeline successfully stabilized
1,254 of them, achieving a Repair Rate of 17.8%. This result
demonstrates a significant and practical improvement, in-
creasing the total count of levels stable under the “Block Ve-
locity” metric from 945 to 2,199. It represents a substantial
improvement over the baseline: out of 8,000 GAN-generated
levels, only 945 were initially stable, and our approach in-
creased this to over 2,000. This corresponds to a Stability
Growth Factor of 2.33, confirming a significant gain in the
total number of playable levels.

Next, we assess the pipeline’s performance using our
“Block Damage” metric, which captures more nuanced in-
stabilities. This metric initially identifies 6,259 unstable lev-
els. After applying the repair process, 1,452 of these lev-
els are successfully stabilized, achieving a Repair Rate of
23.2%. This increases the total count of stable levels un-
der this metric from 1,741 to 3,193. This corresponds to a
Stability Growth Factor of 1.83, demonstrating a substantial
improvement in the number of playable levels.

Finally, we assess the pipeline’s performance using the
more lenient “Block Destruction” metric. Under this def-
inition, a smaller set of 4,533 levels from the initial pool
are considered unstable. When our repair process is applied,
2,051 of these are successfully stabilized, achieving a high
Repair Rate of 45.3%. This increases the total count of stable

Metric Initial Unstable | Stabilized | Repair Rate | Initial Stable | Final Stable | Growth Factor
Block Velocity 7,055 1,254 17.8% 945 2,199 2.33
Block Damage 6,259 1,452 23.2% 1,741 3,193 1.83
Block Destruction 4,533 2,051 45.3% 3,467 5,518 1.59

Table 3: Summary of Repair Outcomes Across Three Stability Metrics.

levels under this metric from 3,467 to 5,518. While this cor-
responds to a Stability Growth Factor of 1.59, the growth is
more modest compared to our other metrics. This is because
the initial number of stable levels is already high.

These varying rates offer a nuanced perspective on our
method’s performance. The modest repair rates for the
stricter “Block Velocity” and “Block Damage” metrics un-
derscore the difficulty of the task and the limitations of our
model. However, the high Stability Growth Factor in these
same cases is still noteworthy. This suggests that while a
successful repair is not the most frequent outcome for these
challenging instabilities, each successful fix provides a valu-
able contribution to the final dataset, especially when the
initial number of stable levels is low. Figure 4 illustrates a
successful application of our repair pipeline. It shows a level
that was initially flagged as unstable according to our met-
rics and then repaired by our system.

We believe our model’s varying success rates across the
different metrics can be explained by the nature of the insta-
bilities each metric captures. The stricter “Block Velocity”
and “Block Damage” metrics are often triggered by slight
movements caused by small, well-defined gaps in the gener-
ated levels. Our model performs well in these cases, as it is
specifically designed to identify and fill such gaps. However,
when blocks are destroyed (triggering the “Block Destruc-
tion” metric), it often signals a major structural collapse.
These catastrophic failures usually cannot be fixed by simply
filling gaps and likely require more substantial modifications
beyond the scope of our current method.

As noted earlier in our methodology, the risk of false pos-
itives, which are instances where a repair process might neg-
atively affect an already stable level, is inherently mitigated
by the design of our two-stage pipeline. The initial stabil-
ity assessment acts as a gatekeeper, ensuring that only levels
flagged as unstable are passed to the repair model. Conse-
quently, the repair function is not performed on stable lev-
els, which focuses the process exclusively on improving un-
playable content without the danger of corrupting already-
valid levels.

Analysis of Unsuccessful Repairs To better understand
the limitations of our method, we analyze the set of levels
that remained unstable after a repair attempt. The failures
can be broadly categorized into two primary modes.

In approximately 24% of unsuccessful repairs, the model
fails to confidently identify any structural gaps above its con-
fidence threshold, even though the level is unstable. This
suggests that a significant portion of instabilities are not
caused by detectable gaps but by more complex architectural
flaws (e.g., poor weight distribution) that our segmentation-
based approach is not designed to address. This observation

is consistent with the validation results of the model and
highlights a clear area for future work.

In the remaining cases, the model correctly identifies and
fills one or more gaps, but this single intervention is in-
sufficient to stabilize the entire structure. This often occurs
in levels with multiple points of weakness, suggesting that
some instabilities require more complex solutions than just
filling gaps, such as modifying existing blocks or perform-
ing multi-step repairs. We also compare the average damage
of the failed repairs against the original unrepaired levels to
measure the impact of our model even in these unsuccessful
cases. Our analysis reveals that even when a repair does not
achieve full stability, it often makes the levels more stable
than they were originally. On average, these levels demon-
strate a 25.1% reduction according to the Block Damage
metric (from 51.99 to 38.95). Similarly, the average count of
destroyed blocks, which informs our Block Destruction met-
ric, decreases by 11.5% (from 5.2 to 4.6). This indicates that
even unsuccessful repairs often reduced the overall severity
of the structural collapse, suggesting our method can provide
value even when it does not fully solve the instability.

In summary, these findings confirm that our repair process
effectively reduces structural weaknesses in Al-generated
levels. While the pipeline could not repair every unstable
instance, its success and almost doubling the number of
playable levels demonstrates its practical value. Moreover,
the discovery that unsuccessful repairs still yield a partial,
mitigating effect by reducing average block damage high-
lights the robustness of our method. These outcomes vali-
date the potential of our segmentation-based approach for
enhancing the quality and reliability of procedurally gener-
ated levels.

Challenges and Limitations

While our segmentation-based repair pipeline demonstrates
success in improving the stability of Al-generated Angry
Birds levels, it is essential to acknowledge its limitations
and the challenges encountered. These aspects not only de-
fine the boundaries of our current method but also highlight
promising directions for future research.

A primary limitation stems from the design of our train-
ing dataset. To create a supervised learning task with a clear
ground truth, we generated gaps by removing blocks from
otherwise stable structures. However, this approach does not
fully represent the more chaotic and complex failure modes
of procedurally generated content. Automatically generated
instabilities can arise from more than just clean gaps. They
may result from poor weight distribution, awkward object
intersections, or a series of minor misalignments that col-
lectively compromise the structure. As a result, our model
is specialized in identifying and fixing gaps, which, as our

(a) Initial Unstable Level

(b) Simulation Result of Unstable Level

(c) Repaired Stable Level

Figure 4: An illustration of a successful repair. (a) The initial Al-generated level is flagged as unstable. (b) When the physics
simulation runs, the structure collapses. (c) After processing by our system, the level is re-evaluated and confirmed to be stable.
Some blocks have changed shape due to inconsistencies in the GAN decoder, as discussed in the ’Limitations and Challenges’

section.

analysis shows, are not the sole cause of instability.
Another challenge lies in the limitations of image-based
segmentation. Our model identifies gaps based purely on the
visual and spatial layout of level components, with no ex-
plicit understanding of underlying physics, material prop-
erties (such as weight, friction, or durability), or object-to-
object forces. This explains the “gap detection failure” sce-
nario, where the model found no gap to fix because the insta-
bility was not caused by a visually apparent hole. Addition-
ally, our current repair process defaults to filling gaps with
wood. While our findings suggest that changing the material
does not significantly affect stability, this uniform approach
can reduce material diversity in repaired levels. To improve
this, a material selection algorithm could be introduced.
Our work operates as a post-processing step and thus in-
herits complexities from the tools it relies on. A significant
challenge is the non-determinism in the GAN decoder that
our work used. As shown in Figure 4, the decoder does not
always reproduce the same structure for a given XML level
file; for example, it may replace a single large block with
two smaller ones. However, we examined whether repeated
renderings of the same XML input could lead to inconsis-
tent stability outcomes due to this non-determinism. While
the decoder occasionally introduces small visual differences
(e.g., splitting one block into two), our experiments showed
that these variations do not affect the stability classification.
Specifically, if a level is unstable, it remains unstable across
repeated renderings; likewise, if a repaired level is stabilized,
it consistently remains stable even with minor shape differ-
ences. This confirms that our stability evaluations and re-
pairs are robust to such decoding variability. Nevertheless,
this variability introduces an additional source of error and
inconsistency into the repair pipeline. To mitigate this, future
work could focus on standardizing the decoding process.

Conclusions and Future Work

Ensuring the quality and playability of procedurally gener-
ated content remains a critical bottleneck, particularly for
physics-based games where structural stability is essential.
In this paper, we address this challenge by introducing an au-

tomated, post-processing repair pipeline designed to salvage
unstable levels generated by Al By training an object seg-
mentation model, YOLOv8m-Seg, to identify and fill struc-
tural gaps, our method successfully increases the yield of
playable Angry Birds levels from an existing GAN-based
generator.

Despite these successes, our work also highlights several
key challenges that pave the way for future research. Our
current model is trained to fix instabilities by filling visu-
ally apparent gaps. Future work should aim to address more
complex failure modes by moving beyond a purely visual
approach. This could involve developing hybrid models to
diagnose instabilities caused by poor weight distribution or
material properties, and not just missing blocks. Future re-
search could also explore semi-supervised or self-supervised
learning techniques to train models on a wider variety of in-
stabilities without requiring manually crafted “gap” exam-
ples. We also observed inconsistencies in decoding levels.
Since the overall shape of the structures remained largely
unchanged, we do not expect these inconsistencies to have
had a significant effect. Nonetheless, addressing this issue
could lead to more accurate results, making it a promising
area for improvement in future work.

While this work focused on Angry Birds, we believe the
core concept of a segmentation-based repair agent operating
on image inputs and 2D representations can be adapted to
other games with visual structures. For example, this frame-
work could be extended to 2D platformers such as Super
Mario Bros. to detect and fix issues like impassable jumps,
broken paths, or unreachable areas. Testing the generaliz-
ability of this approach across different game mechanics and
environments remains a vital next step.

Acknowledgements

This research was supported by the Natural Sciences and En-
gineering Research Council of Canada (NSERC) Discovery
Grant. We thank members of the Serious Games Research
Group and the anonymous reviewers for their feedback. We
thank Hosein Beheshtifard for contributing to an earlier con-
cept of this research.

References

Abdullah, F.; Paliyawan, P.; Thawonmas, R.; Harada, T.; and
Bachtiar, F. A. 2019. An angry birds level generator with
rube goldberg machine mechanisms. In 2079 IEEE Confer-
ence on Games (CoG), 1-8. IEEE.

Abraham, F.; and Stephenson, M. 2023. Utilizing generative
adversarial networks for stable structure generation in angry
birds. In Proceedings of the AAAI conference on artificial in-
telligence and interactive digital entertainment, volume 19,
2-12.

Farrokhi Maleki, M.; and Zhao, R. 2024. Procedural Content
Generation in Games: A Survey with Insights on Emerging
LLM Integration. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 20, 167-178.

Ferreira, L.; and Toledo, C. 2014. A search-based approach
for generating angry birds levels. In 2014 IEEE Conference
on Computational Intelligence and Games, 1-8. IEEE.

Gamage, C.; Pinto, V.; Renz, J.; and Stephenson, M. 2021.
Deceptive level generation for angry birds. In 2021 IEEE
Conference on Games (CoG), 1-8. IEEE.

Graves, M. 2016. Procedural content generation of Angry
Birds levels using monte carlo tree search. Master’s thesis,
The University of Texas at Austin.

Huang, Z.; Li, L.; Krizek, G. C.; and Sun, L. 2023. Research
on traffic sign detection based on improved YOLOVS. Jour-
nal of Computer and Communications, 11(7): 226-232.

Jiang, Y.; Harada, T.; and Thawonmas, R. 2017. Procedural
generation of angry birds fun levels using pattern-struct and
preset-model. In 2017 IEEE Conference on Computational
Intelligence and Games (CIG), 154-161. IEEE.

Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully convo-
lutional networks for semantic segmentation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 3431-3440.

Nygren, N.; Denzinger, J.; Stephenson, B.; and Aycock, J.
2011. User-preference-based automated level generation for
platform games. In 2011 IEEE Conference on Computa-
tional Intelligence and Games (CIG’11), 55-62. IEEE.

Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 779-788.

Ren, S.; He, K.; Girshick, R.; and Sun, J. 2016. Faster R-
CNN: Towards real-time object detection with region pro-
posal networks. IEEE transactions on pattern analysis and
machine intelligence, 39(6): 1137-1149.

Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 234-241. Springer.

Shu, T.; Wang, Z.; Liu, J.; and Yao, X. 2020. A novel cnet-
assisted evolutionary level repairer and its applications to
Super Mario Bros. In 2020 IEEE Congress on Evolution-
ary Computation (CEC), 1-10. IEEE.

Stephenson, M.; and Renz, J. 2016. Procedural generation
of levels for angry birds style physics games. In Proceed-
ings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 12, 225-231.

Stephenson, M.; and Renz, J. 2017. Generating varied, sta-
ble and solvable levels for angry birds style physics games.
In 2017 IEEE Conference on Computational Intelligence
and Games (CIG), 288-295. IEEE.

Stephenson, M.; Renz, J.; Ge, X.; Ferreira, L.; Togelius, J.;
and Zhang, P. 2018. The 2017 aibirds level generation com-
petition. IEEE Transactions on Games, 11(3): 275-284.
Summerville, A.; Snodgrass, S.; Guzdial, M.; Holmgéard, C.;
Hoover, A. K.; Isaksen, A.; Nealen, A.; and Togelius, J.
2018. Procedural content generation via machine learning
(PCGMVL). IEEE Transactions on Games, 10(3): 257-270.

Tanabe, T.; Fukuchi, K.; Sakuma, J.; and Akimoto, Y. 2021.
Level generation for angry birds with sequential VAE and
latent variable evolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, 1052—1060.

Terven, J.; Cérdova-Esparza, D.-M.; and Romero-Gonzélez,
J.-A.2023. A comprehensive review of yolo architectures in
computer vision: From yolov1 to yolov8 and yolo-nas. Ma-
chine learning and knowledge extraction, 5(4): 1680-1716.
Ultralytics. 2023. YOLOVS. https://github.com/ultralytics/
ultralytics. GitHub repository.

Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J. M.;
and Luo, P. 2021. SegFormer: Simple and Efficient De-
sign for Semantic Segmentation with Transformers. arXiv
preprint arXiv:2105.15203.

