Lail S.S., Arnold C.R., de Almeida L.G.N., McKenna N., Chiriboga J.A., Dufour A., Warren A.L., Yates R.M. (2022). Hox‐driven conditional immortalization of myeloid and lymphoid progenitors: Uses, advantages, and future potential. Traffic 1–16. doi:10.1111/tra.12869 [view]
Greene C.J., Nguyen J.A., Cheung S.M., Arnold C.R., Balce D.R., Wang Y.T., Soderholm A., McKenna N., Aggarwal D., Campden R.I., et al. (2022). Macrophages disseminate pathogen-associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nature Communications 13:1–17. [view]
Campden R.I., Warren A.L., Greene C.J., Chiriboga J.A., Arnold C.R., Aggarwal D., McKenna N., Sandall C.F., MacDonald J.A., Yates R.M. (2022). Extracellular cathepsin Z signals through the α5 integrin and augments NLRP3 inflammasome activation. Journal of Biological Chemistry 298:101459. [view]
Ewanchuk, B.W., Arnold, C.R., Balce, D.R., Premnath P., Orsetti, T.L., Warren, A.L., Olsen A., Krawetz, R.J. and Yates, R.M. (2021). A non-immunological role for γ-interferon-inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption. Science Advances. 7:1-11. [view]
Nguyen, J.A. and Yates, R.M. (2021). Better Together: Current Insights Into Phagosome-Lysosome Fusion. Frontiers in Immunology. 12:1-19. [view]
Ewanchuk, B.W. and Yates, R.M. (2018). The phagosome and redox control of antigen processing. Free Radical Biology & Medicine. 125:53-61. [view]
Ewanchuk, B.W., Allan, E.R.O., Warren, A.L., Ramachandran, R., and Yates, R.M. (2018). The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response. The FASEB Journal 32(3):1236-1249. [view]
Allan, E.R.O., Campden, R.I., Ewanchuk, B.W., Tailor, P., Balce, D.R., McKenna, N.T., Greene, C.J., Warren, A.L., Reinheckel, T., and Yates, R.M. (2017). A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis. Journal of Neuroinflammation. 14(1):103. [view]
Cheung, S., Greene, C.J., and Yates, R.M. (2016). Simultaneous analysis of multiple lumenal parameters of individual phagosomes using high-content imaging. Methods in Molecular Biology: Phagocytosis and Phagosomes. 1519:227-239. [view]
Balce, D.R. and Yates, R.M. (2016). Fluorometric approaches to measuring reductive and oxidative events in phagosomes. Methods in Molecular Biology: Phagocytosis and Phagosomes.1519:215-225. [view]
Balce, D.R., Rybicka, J.M., Greene, C.J., Ewanchuk, B.W., and Yates, R.M. (2016). Ligation of FcyR alters phagosomal processing of protein via augmentation of NADPH oxidase activity. Traffic. 17(7):786-802. [view]
Balce, D.R., Greene, C.J., Tailor, P., and Yates, R.M. (2015). Endogenous and exogenous pathways maintain the reductive capacity of the phagosome. Journal of Leukocyte Biology. 100(1):17-26.[view]
Chaudhuri, S., McKenna, N., Balce, D.R., and Yates, R.M. (2015). Infection of porcine bone marrow-derived macrophages by porcine respiratory and reproductive syndrome virus impairs phagosomal maturation. Journal of General Virology. 97(3):669-79. [view]
Allan, E.R.O. and Yates, R.M. (2015). Redundancy between cysteine cathepsins in murine experimental autoimmune encephalomyelitis. PLoS One. 10(6):e0128945. [view]
Balce, D.R., Allan, E.R.O., McKenna, N.T., and Yates, R.M. (2014). Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT) Maintains Phagosomal Proteolysis in Alternatively Activated Macrophages. Journal of Biological Chemistry. 289(46):31891-904. [view]
Allan, E.R.O., Tailor, P., Balce, D.R., Pirzadeh, P., McKenna, N.T., Renaux, B., Warren, A.L., Jirik, F.R., and Yates, R.M.(2014). NADPH oxidase modifies patterns of MHC-II-restricted epitopic repertoires through redox control of antigen processing. Journal of Immunology. 192(11):4989-5001. [view]
Balce, D.R. and Yates, R.M. (2013). Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells. Redox Biology. 1(1):467-474. [view]
Yates, R.M. (2013). Redox considerations in the phagosome: current concepts, controversies, and future challenges. Antioxidants and Redox Signaling. 18(6):628-9. [view]
Rybicka, J.M., Balce, D.R., Chaudhuri, S., Allan, E.R.O., and Yates, R.M. (2012). Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. The EMBO Journal. 31(4):932-44.[view]
Balce, D.R., Li, B., Allan, E.R.O., Rybicka, J.M., Krohn, R.M., and Yates, R.M. (2011). Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood. 118(15):4199-208. [view]
Lemmon, J.C., McFarland, R.J., Rybicka, J.M., Balce, D.R., McKeown, K.R., Krohn, R.M., Matsunaga, T.O., and Yates, R.M. (2011). In vitro and in vivo transfection of primary phagocytes via microbubble-mediated intraphagosomal sonoporation. Journal of Immunological Methods. 371(1-2):152-8. [view]
Rybicka, J.M., Balce, D.R., Khan, M., Krohn, R.M., and Yates, R.M. (2010). NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Nat Acad Sci USA. 107(23):10496-501. [view]
VanderVen, B.C., Hermetter, A., Huang, A., Maxfield, F.R., Russell, D.G., and Yates, R.M. (2010). Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A. 77(8):751-60.
Yates, R.M. and Russell, D.G. (2009). Recording phagosome maturation through the real-time, spectrofluorometric measurement of hydrolytic activities. Methods in Molecular Biology: Macrophages and Dendritic Cells. 531:157-171.
Yates, R.M. and Russell, D.G. (2008). Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods in Molecular Biology: Phagosomes and Autophagosomes. 445:311-325.