Robin Yates Laboratory

Selected Publications

Lail S.S., Arnold C.R., de Almeida L.G.N., McKenna N., Chiriboga J.A., Dufour A., Warren A.L., Yates R.M. (2022). Hox‐driven conditional immortalization of myeloid and lymphoid progenitors: Uses, advantages, and future potential. Traffic 1–16. doi:10.1111/tra.12869 [view]

Greene C.J., Nguyen J.A., Cheung S.M., Arnold C.R., Balce D.R., Wang Y.T., Soderholm A., McKenna N., Aggarwal D., Campden R.I., et al. (2022). Macrophages disseminate pathogen-associated molecular patterns through the direct extracellular release of the soluble content of their phagolysosomes. Nature Communications 13:1–17. [view]

Campden R.I., Warren A.L., Greene C.J., Chiriboga J.A., Arnold C.R., Aggarwal D., McKenna N., Sandall C.F., MacDonald J.A., Yates R.M. (2022). Extracellular cathepsin Z signals through the α5 integrin and augments NLRP3 inflammasome activation. Journal of Biological Chemistry 298:101459. [view]

Ewanchuk, B.W., Arnold, C.R., Balce, D.R., Premnath P., Orsetti, T.L., Warren, A.L., Olsen A., Krawetz, R.J. and Yates, R.M. (2021). A non-immunological role for γ-interferon-inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption. Science Advances. 7:1-11. [view]

Nguyen, J.A. and Yates, R.M. (2021). Better Together: Current Insights Into Phagosome-Lysosome Fusion. Frontiers in Immunology. 12:1-19. [view]

Ewanchuk, B.W. and Yates, R.M. (2018). The phagosome and redox control of antigen processing. Free Radical Biology & Medicine. 125:53-61. [view]

Ewanchuk, B.W., Allan, E.R.O., Warren, A.L., Ramachandran, R., and Yates, R.M. (2018). The cooling compound icilin attenuates autoimmune neuroinflammation through modulation of the T-cell response. The FASEB Journal 32(3):1236-1249. [view]

Allan, E.R.O., Campden, R.I., Ewanchuk, B.W., Tailor, P., Balce, D.R., McKenna, N.T., Greene, C.J., Warren, A.L., Reinheckel, T., and Yates, R.M. (2017). A role for cathepsin Z in neuroinflammation provides mechanistic support for an epigenetic risk factor in multiple sclerosis. Journal of Neuroinflammation. 14(1):103. [view]

Cheung, S., Greene, C.J., and Yates, R.M. (2016). Simultaneous analysis of multiple lumenal parameters of individual phagosomes using high-content imaging. Methods in Molecular Biology: Phagocytosis and Phagosomes. 1519:227-239. [view]

Balce, D.R. and Yates, R.M. (2016). Fluorometric approaches to measuring reductive and oxidative events in phagosomes. Methods in Molecular BiologyPhagocytosis and Phagosomes.1519:215-225. [view]

Balce, D.R., Rybicka, J.M., Greene, C.J., Ewanchuk, B.W., and Yates, R.M. (2016). Ligation of FcyR alters phagosomal processing of protein via augmentation of NADPH oxidase activity. Traffic17(7):786-802. [view]

Balce, D.R., Greene, C.J., Tailor, P., and Yates, R.M. (2015). Endogenous and exogenous pathways maintain the reductive capacity of the phagosome. Journal of Leukocyte Biology. 100(1):17-26.[view]

Chaudhuri, S., McKenna, N., Balce, D.R., and Yates, R.M. (2015). Infection of porcine bone marrow-derived macrophages by porcine respiratory and reproductive syndrome virus impairs phagosomal maturation. Journal of General Virology. 97(3):669-79[view]

Allan, E.R.O. and Yates, R.M. (2015). Redundancy between cysteine cathepsins in murine experimental autoimmune encephalomyelitis. PLoS One. 10(6):e0128945. [view]

Balce, D.R., Allan, E.R.O., McKenna, N.T., and Yates, R.M. (2014). Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT) Maintains Phagosomal Proteolysis in Alternatively Activated Macrophages. Journal of Biological Chemistry. 289(46):31891-904. [view]

Allan, E.R.O., Tailor, P., Balce, D.R., Pirzadeh, P., McKenna, N.T., Renaux, B., Warren, A.L., Jirik, F.R., and Yates, R.M.(2014). NADPH oxidase modifies patterns of MHC-II-restricted epitopic repertoires through redox control of antigen processing. Journal of Immunology. 192(11):4989-5001. [view]

Balce, D.R. and Yates, R.M. (2013). Redox-sensitive probes for the measurement of redox chemistries within phagosomes of macrophages and dendritic cells. Redox Biology. 1(1):467-474. [view]

Yates, R.M. (2013). Redox considerations in the phagosome: current concepts, controversies, and future challenges. Antioxidants and Redox Signaling18(6):628-9. [view]

Rybicka, J.M., Balce, D.R., Chaudhuri, S., Allan, E.R.O., and Yates, R.M. (2012). Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. The EMBO Journal. 31(4):932-44.[view]

Balce, D.R., Li, B., Allan, E.R.O., Rybicka, J.M., Krohn, R.M., and Yates, R.M. (2011). Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood118(15):4199-208. [view]

Lemmon, J.C., McFarland, R.J., Rybicka, J.M., Balce, D.R., McKeown, K.R., Krohn, R.M., Matsunaga, T.O., and Yates, R.M. (2011). In vitro and in vivo transfection of primary phagocytes via microbubble-mediated intraphagosomal sonoporation. Journal of Immunological Methods. 371(1-2):152-8. [view]

Rybicka, J.M., Balce, D.R., Khan, M., Krohn, R.M., and Yates, R.M. (2010). NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Nat Acad Sci USA107(23):10496-501. [view]

VanderVen, B.C., Hermetter, A., Huang, A., Maxfield, F.R., Russell, D.G., and Yates, R.M. (2010). Development of a novel, cell-based chemical screen to identify inhibitors of intraphagosomal lipolysis in macrophages. Cytometry A. 77(8):751-60.

Yates, R.M. and Russell, D.G. (2009). Recording phagosome maturation through the real-time, spectrofluorometric measurement of hydrolytic activities. Methods in Molecular Biology: Macrophages and Dendritic Cells. 531:157-171.

Yates, R.M. and Russell, D.G. (2008). Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods in Molecular Biology: Phagosomes and Autophagosomes. 445:311-325.