What humans make, can disintegrate. Corrosion eats away at infrastructure, slowly but inexorably. In the oil and gas industry, corrosion is estimated to cost as much as US$3-7 billion each year. Corrosion due to microbial activity, or Microbiologically Influenced Corrosion (MIC), accounts for a large percentage of this. Not enough is known about how MIC occurs, primarily because it has been monitored by approaches that target only about 1 per cent of select microbial groups and because researchers have tended to study it in isolated disciplines, without integrating their findings.
Genomics allow for a deeper understanding and a more holistic examination of MIC processes across disciplines, leading to better understanding and management of MIC in the oil and gas industry. Drs. Lisa Gieg of the University of Calgary, John Wolodko of University of Alberta and Faisal Khan of Memorial University are leading a team with expertise in genomics, electrochemistry, degradation modeling, risk assessment and management. The project is developing practical applications to produce knowledge about MIC leading to the development of devices and assays, degradation and risk models, and management strategies to predict when, where and why MIC occurs.
By integrating these deliverables into corrosion management frameworks and standards, their use will become widespread, leading to reduced oil spills (by helping to minimize pipeline leaks, for instance) and improved asset integrity worker safety and environmental compliance. They will also extend the productive life of Canada’s oil and gas infrastructure, reducing operating costs and allowing potential capital savings of some $300-500 million, or 10 per cent.
Research Activities
Our mission is to utilize new genomics testing and analysis methods to better understand and predict the formation of MIC and its evolution, and to help develop/validate tools (assays, devices, databases, models & guidelines) and mitigation strategies for the Canadian energy sector.
Knowledge
Identify the microbial actors and pathways, chemical species, and MIC mechanisms that lead to facility failures.
Assays & Devices
Develop -omics and chemical-based monitoring tools to detect and measure MIC and associated chemical end-products.
Models
Devise better predictive modeling and risk assessment tools to help improve materials design and maintenance/ operating practices.
Translation
Improve corrosion control strategies to reduce potential failures by developing standards and guidelines.
Funding and Support
The geno-MIC project is funded through a Genome Canada Large Scale Applied Research Program (LSARP) grant, titled Managing Microbial Corrosion in Canadian Offshore and Onshore Oil Production Operations. Research commenced in the Spring of 2017 and will extend into the fall of 2021. geno-MIC was established with support from the following:
Federal & Provincial Agencies
Genome Canada
Mitacs
Natural Resources Canada
Genome Alberta
Alberta Innovates
InnoTech Alberta
Genome Atlantic
Government of Newfoundland & Labrador
End-User Partners
Baker Hughes
BP
Brenntag
CRC
DNV GL
Dupont
Enbridge
Husky Energy
LuminUltra
Marathon
Microbial Analysis
Murphy Oil
NALCO Champion
OSP
Promega
Schlumberger
Schlumberger
Shell
Suez
Suncor
TransMountain
United Initiators
Universities
University of Calgary
Dalhousie University
University of Alberta
The University of Oklahoma
Memorial University
VIA University College